Skip to main content

Advertisement

Log in

The Origin and Arrhythmogenic Potential of Fibroblasts in Cardiac Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Fibroblasts play a major role in normal cardiac physiology and in the response of the heart to injury and disease. Cardiac electrophysiological research has primarily focused on the mechanisms of remodeling that accompany cardiac disease with an emphasis on myocyte electrophysiology. Recently, there has been increasing interest in the potential role of fibroblasts in cardiac electrophysiology. This review focuses on the arrhythmia mechanisms involving interactions between myocytes and fibroblasts. We also discuss the available evidence supporting the contribution of intracardiac and extracardiac sources to the fibroblast and myofibroblast populations in diseased hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roger, V. L., Go, A.S., Lloyd-Jones, D.M., Benjamin, E.J., Berry, J.D., Borden, W.B., et al. Heart disease and stroke statistics 2012 update. Circulation. doi:10.1161/CIR.0b013e31823ac046.

  2. Rohr, S. (2012). Arrhythmogenic implications of fibroblast–myocyte interactions. Circulation. Arrhythmia and Electrophysiology, 5(2), 442–452. doi:10.1161/CIRCEP.110.957647.

    Article  PubMed  Google Scholar 

  3. Rosker, C., Salvarani, N., Schmutz, S., Grand, T., & Rohr, S. (2011). Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of alpha-smooth muscle actin containing stress fibers. Circulation Research, 109(10), 1120–1131. doi:10.1161/CIRCRESAHA.111.244798.

    Article  PubMed  CAS  Google Scholar 

  4. Rohr, S. (2009). Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm, 6(6), 848–856. doi:10.1016/j.hrthm.2009.02.038.

    Article  PubMed  Google Scholar 

  5. Miragoli, M., Salvarani, N., & Rohr, S. (2007). Myofibroblasts induce ectopic activity in cardiac tissue. Circulation Research, 101(8), 755–758. doi:10.1161/CIRCRESAHA.107.160549.

    PubMed  CAS  Google Scholar 

  6. Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research, 98(6), 801–810. doi:10.1161/01.RES.0000214537.44195.a3.

    Article  PubMed  CAS  Google Scholar 

  7. Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428. doi:10.1161/01.RES.0000089258.40661.0C.

    Article  PubMed  CAS  Google Scholar 

  8. Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. (2010). Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020. doi:10.1161/CIRCRESAHA.110.227421.

    Article  PubMed  CAS  Google Scholar 

  9. McSpadden, L. C., Nguyen, H., & Bursac, N. (2012). Size and ionic currents of unexcitable cells coupled to cardiomyocytes distinctly modulate cardiac action potential shape and pacemaking activity in micropatterned cell pairs. Circulation. Arrhythmia and Electrophysiology. doi:10.1161/CIRCEP.111.969329.

  10. Pedrotty, D. M., Klinger, R. Y., Kirkton, R. D., & Bursac, N. (2009). Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovascular Research, 83(4), 688–697. doi:10.1093/cvr/cvp164.

    Article  PubMed  CAS  Google Scholar 

  11. Zlochiver, S., Munoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophysical Journal, 95(9), 4469–4480. doi:10.1529/biophysj.108.136473.

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2012). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242–251. doi:10.1093/cvr/cvr292.

    Article  PubMed  CAS  Google Scholar 

  13. Xie, Y., Garfinkel, A., Weiss, J. N., & Qu, Z. (2009). Cardiac alternans induced by fibroblast–myocyte coupling: mechanistic insights from computational models. American Journal of Physiology - Heart and Circulatory Physiology, 297(2), H775–H784. doi:10.1152/ajpheart.00341.2009.

    Article  PubMed  CAS  Google Scholar 

  14. Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J. N., & Qu, Z. (2009). Effects of fibroblast–myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study. Heart Rhythm, 6(11), 1641–1649. doi:10.1016/j.hrthm.2009.08.003.

    Article  PubMed  Google Scholar 

  15. Jacquemet, V., & Henriquez, C. S. (2009). Modulation of conduction velocity by nonmyocytes in the low coupling regime. IEEE Transactions on Biomedical Engineering, 56(3), 893–896. doi:10.1109/TBME.2008.2006028.

    Article  PubMed  Google Scholar 

  16. Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast–myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology - Heart and Circulatory Physiology, 294(5), H2040–H2052. doi:10.1152/ajpheart.01298.2007.

    Article  PubMed  CAS  Google Scholar 

  17. Jacquemet, V., & Henriquez, C. S. (2007). Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation. Europace, 9(Suppl 6), vi29–vi37. doi:10.1093/europace/eum207.

    Article  PubMed  Google Scholar 

  18. Nag, A. C. (1980). Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios, 28(109), 41–61.

    PubMed  CAS  Google Scholar 

  19. Zak, R. (1974). Development and proliferative capacity of cardiac muscle cells. Circulation Research, 35((2) suppl II), 17–26.

    PubMed  CAS  Google Scholar 

  20. Banerjee, I., Fuseler, J. W., Price, R. L., Borg, T. K., & Baudino, T. A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. American Journal of Physiology—Heart and Circulatory Physiology, 293(3), H1883–H1891. doi:10.1152/ajpheart.00514.2007.

    Article  PubMed  CAS  Google Scholar 

  21. Zeisberg, E. M., & Kalluri, R. (2010). Origins of cardiac fibroblasts. Circulation Research, 107(11), 1304–1312. doi:10.1161/CIRCRESAHA.110.231910.

    Article  PubMed  CAS  Google Scholar 

  22. Yano, T., Miura, T., Ikeda, Y., Matsuda, E., Saito, K., Miki, T., et al. (2005). Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovascular Pathology, 14(5), 241–246. doi:10.1016/j.carpath.2005.05.004.

    Article  PubMed  CAS  Google Scholar 

  23. Kania, G., Blyszczuk, P., Stein, S., Valaperti, A., Germano, D., Dirnhofer, S., et al. (2009). Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor beta-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circulation Research, 105(5), 462–470. doi:10.1161/CIRCRESAHA.109.196287.

    Article  PubMed  CAS  Google Scholar 

  24. Mollmann, H., Nef, H. M., Kostin, S., von Kalle, C., Pilz, I., Weber, M., et al. (2006). Bone marrow-derived cells contribute to infarct remodelling. Cardiovascular Research, 71(4), 661–671. doi:10.1016/j.cardiores.2006.06.013.

    Article  PubMed  Google Scholar 

  25. Odorfer, K. I., Walter, I., Kleiter, M., Sandgren, E. P., & Erben, R. G. (2008). Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial infarction. Journal of Cellular and Molecular Medicine, 12(6B), 2867–2874. doi:10.1111/j.1582-4934.2008.00511.x.

    Article  PubMed  Google Scholar 

  26. Pichler, M., Rainer, P. P., Schauer, S., & Hoefler, G. (2012). Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin. Journal of the American College of Cardiology, 59(11), 1008–1016. doi:10.1016/j.jacc.2011.11.036.

    Article  PubMed  Google Scholar 

  27. Sato, D., Otani, H., Enoki, C., Fujita, M., Minato, N., & Iwasaka, T. (2011). Phenotypic modulation and turnover of bone marrow-derived cells after myocardial infarction in rats. Cardiovascular Pathology, 20(3), 146–155. doi:10.1016/j.carpath.2010.04.001.

    Article  PubMed  Google Scholar 

  28. van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. The Journal of Pathology, 214(3), 377–386. doi:10.1002/path.2281.

    Article  PubMed  Google Scholar 

  29. Wu, G. D., Tuan, T. L., Bowdish, M. E., Jin, Y. S., Starnes, V. A., Cramer, D. V., et al. (2003). Evidence for recipient derived fibroblast recruitment and activation during the development of chronic cardiac allograft rejection. Transplantation, 76(3), 609–614. doi:10.1097/01.TP.0000066362.37931.6D.

    Article  PubMed  Google Scholar 

  30. Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.1073/pnas.0608799103.

    Article  PubMed  CAS  Google Scholar 

  31. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961. doi:10.1038/nm1613.

    Article  PubMed  CAS  Google Scholar 

  32. Aisagbonhi, O., Rai, M., Ryzhov, S., Atria, N., Feoktistov, I., & Hatzopoulos, A. K. (2011). Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Disease Models & Mechanisms, 4(4), 469–483. doi:10.1242/dmm.006510.

    Article  CAS  Google Scholar 

  33. Alva, J. A., Zovein, A. C., Monvoisin, A., Murphy, T., Salazar, A., Harvey, N. L., et al. (2006). VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Developmental Dynamics, 235(3), 759–767. doi:10.1002/dvdy.20643.

    Article  PubMed  CAS  Google Scholar 

  34. Chu, P. Y., Mariani, J., Finch, S., McMullen, J. R., Sadoshima, J., Marshall, T., et al. (2010). Bone marrow-derived cells contribute to fibrosis in the chronically failing heart. American Journal of Pathology, 176(4), 1735–1742. doi:10.2353/ajpath.2010.090574.

    Article  PubMed  CAS  Google Scholar 

  35. Duan, J., Gherghe, C., Liu, D., Hamlett, E., Srikantha, L., Rodgers, L., et al. (2012). Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO Journal, 31(2), 429–442. doi:10.1038/emboj.2011.418.

    Article  CAS  Google Scholar 

  36. Hocht-Zeisberg, E., Kahnert, H., Guan, K., Wulf, G., Hemmerlein, B., Schlott, T., et al. (2004). Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. European Heart Journal, 25(9), 749–758. doi:10.1016/j.ehj.2004.01.017.

    Article  PubMed  Google Scholar 

  37. Okayama, K., Azuma, J., Dosaka, N., Iekushi, K., Sanada, F., Kusunoki, H., et al. (2012). Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial–mesenchymal transition. Hypertension, 59(5), 958–965. doi:10.1161/HYPERTENSIONAHA.111.183905.

    Article  PubMed  CAS  Google Scholar 

  38. Szardien, S., Nef, H. M., Troidl, C., Willmer, M., Voss, S., Liebetrau, C., et al. (2012). Bone marrow-derived cells contribute to cell turnover in aging murine hearts. International Journal of Molecular Medicine, 30(2), 283–287. doi:10.3892/ijmm.2012.995.

    PubMed  CAS  Google Scholar 

  39. van Tuyn, J., Atsma, D. E., Winter, E. M., van der Velde-van, D. I., Pijnappels, D. A., Bax, N. A., et al. (2007). Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells, 25(2), 271–278. doi:10.1634/stemcells.2006-0366.

    Article  PubMed  Google Scholar 

  40. Widyantoro, B., Emoto, N., Nakayama, K., Anggrahini, D. W., Adiarto, S., Iwasa, N., et al. (2010). Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation, 121(22), 2407–2418. doi:10.1161/CIRCULATIONAHA.110.938217.

    Article  PubMed  CAS  Google Scholar 

  41. Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., et al. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. Journal of Clinical Investigation, 121(5), 1894–1904. doi:10.1172/JCI45529.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou, B., & Pu, W. T. (2011). Epicardial epithelial-to-mesenchymal transition in injured heart. Journal of Cellular and Molecular Medicine, 15(12), 2781–2783. doi:10.1111/j.1582-4934.2011.01450.x.

    Article  PubMed  CAS  Google Scholar 

  43. Fries, K. M., Blieden, T., Looney, R. J., Sempowski, G. D., Silvera, M. R., Willis, R. A., et al. (1994). Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clinical Immunology and Immunopathology, 72(3), 283–292.

    Article  PubMed  CAS  Google Scholar 

  44. Lekic, P. C., Pender, N., & McCulloch, C. A. (1997). Is fibroblast heterogeneity relevant to the health, diseases, and treatments of periodontal tissues? Critical Reviews in Oral Biology and Medicine, 8(3), 253–268.

    Article  PubMed  CAS  Google Scholar 

  45. Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12877–12882. doi:10.1073/pnas.162488599.

    Article  PubMed  CAS  Google Scholar 

  46. Burstein, B., Libby, E., Calderone, A., & Nattel, S. (2008). Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation, 117(13), 1630–1641. doi:10.1161/CIRCULATIONAHA.107.748053.

    Article  PubMed  Google Scholar 

  47. Flack, E. C., Lindsey, M. L., Squires, C. E., Kaplan, B. S., Stroud, R. E., Clark, L. L., et al. (2006). Alterations in cultured myocardial fibroblast function following the development of left ventricular failure. Journal of Molecular and Cellular Cardiology, 40(4), 474–483. doi:10.1016/j.yjmcc.2006.01.019.

    Article  PubMed  CAS  Google Scholar 

  48. Squires, C. E., Escobar, G. P., Payne, J. F., Leonardi, R. A., Goshorn, D. K., Sheats, N. J., et al. (2005). Altered fibroblast function following myocardial infarction. Journal of Molecular and Cellular Cardiology, 39(4), 699–707. doi:10.1016/j.yjmcc.2005.07.008.

    Article  PubMed  CAS  Google Scholar 

  49. Jarvis, M. D., Rademaker, M. T., Ellmers, L. J., Currie, M. J., McKenzie, J. L., Palmer, B. R., et al. (2006). Comparison of infarct-derived and control ovine cardiac myofibroblasts in culture: response to cytokines and natriuretic peptide receptor expression profiles. American Journal of Physiology—Heart and Circulatory Physiology, 291(4), H1952–H1958. doi:10.1152/ajpheart.00764.2005.

    Article  PubMed  CAS  Google Scholar 

  50. Vasquez, C., Benamer, N., & Morley, G. E. (2011). The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. Journal of Cardiovascular Pharmacology, 57(4), 380–388. doi:10.1097/FJC.0b013e31820cda19.

    Article  PubMed  CAS  Google Scholar 

  51. Brown, R. D., Ambler, S. K., Mitchell, M. D., & Long, C. S. (2005). The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annual Review of Pharmacology and Toxicology, 45, 657–687. doi:10.1146/annurev.pharmtox.45.120403.095802.

    Article  PubMed  CAS  Google Scholar 

  52. Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 122(1), 103–111.

    Article  PubMed  CAS  Google Scholar 

  53. Sappino, A. P., Schurch, W., & Gabbiani, G. (1990). Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Laboratory Investigation, 63(2), 144–161.

    PubMed  CAS  Google Scholar 

  54. Powell, D. W., Mifflin, R. C., Valentich, J. D., Crowe, S. E., Saada, J. I., & West, A. B. (1999). Myofibroblasts. I. Paracrine cells important in health and disease. American Journal of Physiology, 277(1 Pt 1), C1–C9.

    PubMed  CAS  Google Scholar 

  55. Petrov, V. V., Fagard, R. H., & Lijnen, P. J. (2002). Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension, 39(2), 258–263.

    Article  PubMed  CAS  Google Scholar 

  56. Kondalenko, V. G., Babaev, V. R., & Rukosuev, V. S. (1981). Myofibroblasts in a zone of myocardial infarction. Bulletin of Experimental Biology and Medicine, 92(6), 1727–1729. doi:10.1007/bf00837725.

    Article  Google Scholar 

  57. Vracko, R., & Thorning, D. (1993). Myofibroblasts and smooth muscle cells in human myocardial scars: possible origins and inductive factors. Cardiovascular Pathology, 2(3), 207–213.

    Google Scholar 

  58. Eyden, B. (2005). The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 1—normal and reactive cells. Journal of Submicroscopic Cytology and Pathology, 37(2), 109–204.

    PubMed  CAS  Google Scholar 

  59. Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97(5), 343–347. doi:10.1007/s00395-002-0365-8.

    Article  PubMed  Google Scholar 

  60. Lu, D., Soleymani, S., Madakshire, R., & Insel, P. A. (2012). ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. The FASEB Journal, 26(6), 2580–2591. doi:10.1096/fj.12-204677.

    Article  CAS  Google Scholar 

  61. Sun, Y., & Weber, K. T. (2000). Infarct scar: a dynamic tissue. Cardiovascular Research, 46(2), 250–256.

    Article  PubMed  CAS  Google Scholar 

  62. Willems, I. E., Havenith, M. G., De Mey, J. G., & Daemen, M. J. (1994). The alpha-smooth muscle actin-positive cells in healing human myocardial scars. American Journal of Pathology, 145(4), 868–875.

    PubMed  CAS  Google Scholar 

  63. Jugdutt, B. I. (2003). Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Current Drug Targets. Cardiovascular & Haematological Disorders, 3(1), 1–30.

    Article  CAS  Google Scholar 

  64. Wessels, A., & Perez-Pomares, J. M. (2004). The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 276(1), 43–57. doi:10.1002/ar.a.10129.

    PubMed  CAS  Google Scholar 

  65. Wessels, A., van den Hoff, M. J., Adamo, R. F., Phelps, A. L., Lockhart, M. M., Sauls, K., et al. (2012). Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Developmental Biology, 366(2), 111–124. doi:10.1016/j.ydbio.2012.04.020.

    Article  PubMed  CAS  Google Scholar 

  66. Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174(2), 221–232. doi:10.1006/dbio.1996.0068.

    Article  PubMed  CAS  Google Scholar 

  67. Perez-Pomares, J. M., Carmona, R., Gonzalez-Iriarte, M., Atencia, G., Wessels, A., & Munoz-Chapuli, R. (2002). Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 46(8), 1005–1013.

    PubMed  CAS  Google Scholar 

  68. Lie-Venema, H., van den Akker, N. M., Bax, N. A., Winter, E. M., Maas, S., Kekarainen, T., et al. (2007). Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. The Scientific World Journal, 7, 1777–1798. doi:10.1100/tsw.2007.294.

    Article  CAS  Google Scholar 

  69. Potts, J. D., & Runyan, R. B. (1989). Epithelial–mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Developmental Biology, 134(2), 392–401.

    Article  PubMed  CAS  Google Scholar 

  70. Norris, R. A., Borg, T. K., Butcher, J. T., Baudino, T. A., Banerjee, I., & Markwald, R. R. (2008). Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Annals of the New York Academy of Sciences, 1123, 30–40. doi:10.1196/annals.1420.005.

    Article  PubMed  CAS  Google Scholar 

  71. Piera-Velazquez, S., Li, Z., & Jimenez, S. A. (2011). Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. American Journal of Pathology, 179(3), 1074–1080. doi:10.1016/j.ajpath.2011.06.001.

    Article  PubMed  CAS  Google Scholar 

  72. Fredj, S., Bescond, J., Louault, C., & Potreau, D. (2005). Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. Journal of Cellular Physiology, 202(3), 891–899. doi:10.1002/jcp.20197.

    Article  PubMed  CAS  Google Scholar 

  73. Lucas, J.A., Zhang, Y., Li, P., Gong, K., Miller, A.P., Hassan, E., et al. Inhibition of transforming growth factor-beta signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. American Journal of Physiology—Heart and Circulatory Physiology, 298(2),H424–432. doi: 10.1152/ajpheart.00529.2009.

  74. Eisenberg, L. M., & Markwald, R. R. (1995). Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circulation Research, 77(1), 1–6.

    Article  PubMed  CAS  Google Scholar 

  75. Ursell, P. C., Gardner, P. I., Albala, A., Fenoglio, J. J., Jr., & Wit, A. L. (1985). Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circulation Research, 56(3), 436–451.

    Article  PubMed  CAS  Google Scholar 

  76. Dillon, S. M., Allessie, M. A., Ursell, P. C., & Wit, A. L. (1988). Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circulation Research, 63, 182–206.

    Article  PubMed  CAS  Google Scholar 

  77. Gardner, P. I., Ursell, P. C., Fenoglio, J. J., Jr., & Wit, A. L. (1985). Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation, 72(3), 596–611.

    Article  PubMed  CAS  Google Scholar 

  78. Rook, M. B., Jongsma, H. J., & de Jonge, B. (1989). Single channel currents of homo- and heterologous gap junctions between cardiac fibroblasts and myocytes. Pflügers Archiv, 414(1), 95–98.

    Article  PubMed  CAS  Google Scholar 

  79. Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology, 263(5 Pt 1), C959–C977.

    PubMed  CAS  Google Scholar 

  80. Fahrenbach, J. P., Mejia-Alvarez, R., & Banach, K. (2007). The relevance of non-excitable cells for cardiac pacemaker function. The Journal of Physiology, 585(Pt 2), 565–578. doi:10.1113/jphysiol.2007.144121.

    Article  PubMed  CAS  Google Scholar 

  81. Lafontant, P. J., Burns, A. R., Donnachie, E., Haudek, S. B., Smith, C. W., & Entman, M. L. (2006). Oncostatin M differentially regulates CXC chemokines in mouse cardiac fibroblasts. American Journal of Physiology. Cell Physiology, 291(1), C18–C26. doi:10.1152/ajpcell.00322.2005.

    Article  PubMed  CAS  Google Scholar 

  82. Gray, M. O., Long, C. S., Kalinyak, J. E., Li, H. T., & Karliner, J. S. (1998). Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovascular Research, 40(2), 352–363.

    Article  PubMed  CAS  Google Scholar 

  83. Camelliti, P., Devlin, G. P., Matthews, K. G., Kohl, P., & Green, C. R. (2004). Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovascular Research, 62(2), 415–425. doi:10.1016/j.cardiores.2004.01.027.

    Article  PubMed  CAS  Google Scholar 

  84. Zhang, Y., Kanter, E. M., & Yamada, K. A. (2010). Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovascular Pathology, 19(6), E233–E240. doi:10.1016/j.carpath.2009.12.002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a NIH grant to GEM (HL076751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory E. Morley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasquez, C., Morley, G.E. The Origin and Arrhythmogenic Potential of Fibroblasts in Cardiac Disease. J. of Cardiovasc. Trans. Res. 5, 760–767 (2012). https://doi.org/10.1007/s12265-012-9408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9408-1

Keywords

Navigation