Skip to main content

Advertisement

Log in

Harnessing the Potential of Adult Cardiac Stem Cells: Lessons from Haematopoiesis, the Embryo and the Niche

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Across biomedicine, there is a major drive to develop stem cell (SC) treatments for debilitating diseases. Most effective treatments restore an embryonic phenotype to adult SCs. This has led to two emerging paradigms in SC biology: the application of developmental biology studies and the manipulation of the SC niche. Developmental studies can reveal how SCs are orchestrated to build organs, the understanding of which is important in order to instigate tissue repair in the adult. SC niche studies can reveal cues that maintain SC ‘stemness’ and how SCs may be released from the constraints of the niche to differentiate and repopulate a ‘failing’ organ. The haematopoietic system provides an exemplar whereby characterisation of the blood lineages during development and the bone marrow niche has resulted in therapeutics now routinely used in the clinic. Ischaemic heart disease is a major cause of morbidity and mortality in humans and the question remains as to whether these principles can be applied to the heart, in order to exploit the potential of adult SCs for use in cardiovascular repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther, 82, 252–264.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, F. L., Look, A. T., Gockerman, J., Ruggiero, M. R., Dalla-Pozza, L., & Billings, F. T. (1984). Bone-marrow transplantation in a patient with sickle-cell anemia. N Engl J Med, 311, 780–783.

    Article  PubMed  CAS  Google Scholar 

  3. Vermylen, C., Ninane, J., Fernandez Robles, E., & Cornu, G. (1988). Bone marrow transplantation in five children with sickle cell anaemia. The Lancet, 331, 1427–1428.

    Article  Google Scholar 

  4. Hansbury, E. N., Schultz, W. H., Ware, R. E., & Aygun, B. (2012). Bone marrow transplant options and preferences in a sickle cell anemia cohort on chronic transfusions. Pediatr. Blood Cancer, 58, 611–615.

    Article  PubMed  Google Scholar 

  5. Clifford, D. M., Fisher, S. A., Brunskill, S. J., Doree, C., Mathur, A., Watt, S., et al. (2012). Stem cell treatment for acute myocardial infarction. Cochrane Database Systematic Review, 2, CD006536.

    Google Scholar 

  6. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. N Engl J Med, 346, 5–15.

    Article  PubMed  Google Scholar 

  7. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.

    Article  PubMed  CAS  Google Scholar 

  8. Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences, 100, 12313–12318.

    Article  CAS  Google Scholar 

  9. Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279, 11384–11391.

    Article  PubMed  CAS  Google Scholar 

  10. Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.

    Article  PubMed  CAS  Google Scholar 

  11. Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., et al. (2005). CD31− but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97, 52–61.

    Article  PubMed  CAS  Google Scholar 

  12. Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.

    Article  PubMed  CAS  Google Scholar 

  13. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  PubMed  CAS  Google Scholar 

  14. Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R., et al. (2007). Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature, 445, 177–182.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., et al. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454, 109–113.

    Article  PubMed  CAS  Google Scholar 

  16. Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.

    Article  PubMed  CAS  Google Scholar 

  17. Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., et al. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607–619.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., et al. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest, 121, 1894–1904.

    Article  PubMed  CAS  Google Scholar 

  19. Spradling, A., Drummond-Barbosa, D., & Kai, T. (2001). Stem cells find their niche. Nature, 414, 98–104.

    Article  PubMed  CAS  Google Scholar 

  20. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  21. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    PubMed  CAS  Google Scholar 

  22. Lander, A. D., Kimble, J., Clevers, H., Fuchs, E., Montarras, D., Buckingham, M., et al. (2012). What does the concept of the stem cell niche really mean today? BMC Biol, 10, 19.

    Article  PubMed  Google Scholar 

  23. Jones, D. L., & Wagers, A. J. (2008). No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol., 9, 11–21.

    Article  PubMed  CAS  Google Scholar 

  24. Ohta, M., Sakai, T., Saga, Y., Aizawa, S., & Saito, M. (1998). Suppression of hematopoietic activity in tenascin-C-deficient mice. Blood, 91, 4074–4083.

    PubMed  CAS  Google Scholar 

  25. Tsai, S., Patel, V., Beaumont, E., Lodish, H. F., Nathan, D. G., & Sieff, C. A. (1987). Differential binding of erythroid and myeloid progenitors to fibroblasts and fibronectin. Blood, 69, 1587–1594.

    PubMed  CAS  Google Scholar 

  26. Weinstein, R., Riordan, M. A., Wenc, K., Kreczko, S., Zhou, M., & Dainiak, N. (1989). Dual role of fibronectin in hematopoietic differentiation. Blood, 73, 111–116.

    PubMed  CAS  Google Scholar 

  27. St-Jacques, B., Dassule, H. R., Karavanova, I., Botchkarev, V. A., Li, J., Danielian, P. S., et al. (1998). Sonic hedgehog signaling is essential for hair development. Current Biology, 8, 1058–1069.

    Article  PubMed  CAS  Google Scholar 

  28. Levy, V., Lindon, C., Harfe, B. D., & Morgan, B. A. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell, 9, 855–861.

    Article  PubMed  CAS  Google Scholar 

  29. Madison, B. B., Braunstein, K., Kuizon, E., Portman, K., Qiao, X. T., & Gumucio, D. L. (2005). Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development, 132, 279–289.

    Article  PubMed  CAS  Google Scholar 

  30. Durand, C., & Dzierzak, E. (2005). Embryonic beginnings of adult hematopoietic stem cells. Haematologica, 90, 100–108.

    PubMed  Google Scholar 

  31. Gratwohl, A., & Niederwieser, D. (2012). History of hematopoietic stem cell transplantation: evolution and perspectives. Curr. Probl. Dermatol., 43, 81–90.

    Article  PubMed  Google Scholar 

  32. Costa, G., Kouskoff, V., & Lacaud, G. (2012). Origin of blood cells and HSC production in the embryo. Trends in Immunology, 33, 215–223.

    Article  PubMed  CAS  Google Scholar 

  33. Kyba, M., Perlingeiro, R. C. R., & Daley, G. Q. (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109, 29–37.

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto, K., Isagawa, T., Nishimura, T., Ogaeri, T., Eto, K., Miyazaki, S., et al. (2009). Stepwise development of hematopoietic stem cells from embryonic stem cells. PLoS One, 4, e4820.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, Y., Yates, F., Naveiras, O., Ernst, P., & Daley, G. Q. (2005). Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 19081–19086.

    Article  PubMed  CAS  Google Scholar 

  36. Ledran, M. H., Krassowska, A., Armstrong, L., Dimmick, I., Renström, J., Lang, R., et al. (2008). Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell, 3, 85-98.

    Google Scholar 

  37. PF, Dieterlen-Lievre. (1975). On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. Journal of Embryology and Experimental Morphology, 33, 607–619.

    Google Scholar 

  38. Turpen, J. B., Knudson, C. M., & Hoefen, P. S. (1981). The early ontogeny of hematopoietic cells studied by grafting cytogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. Developmental Biology, 85, 99–112.

    Article  PubMed  CAS  Google Scholar 

  39. Ciau-Uitz, A., Walmsley, M., & Patient, R. (2000). Distinct origins of adult and embryonic blood in Xenopus. Cell, 102, 787–796.

    Article  PubMed  CAS  Google Scholar 

  40. Winnier, G., Blessing, M., Labosky, P. A., & Hogan, B. L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev., 9, 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  41. Kumano, K., Chiba, S., Kunisato, A., Sata, M., Saito, T., Nakagami-Yamaguchi, E., et al. (2003). Notch1 but not notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity, 18, 699–711.

    Article  PubMed  CAS  Google Scholar 

  42. Dyer, M. A., Farrington, S. M., Mohn, D., Munday, J. R., & Baron, M. H. (2001). Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development, 128, 1717–1730.

    PubMed  CAS  Google Scholar 

  43. Speck, N. A., & Gilliland, D. G. (2002). Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer, 2, 502–513.

    Article  PubMed  CAS  Google Scholar 

  44. Yokomizo, T., Ogawa, M., Osato, M., Kanno, T., Yoshida, H., Fujimoto, T., et al. (2001). Requirement of Runx1/AML1/PEBP2+¦B for the generation of haematopoietic cells from endothelial cells. Genes to Cells, 6, 13–23.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891.

    Article  PubMed  CAS  Google Scholar 

  46. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.

    Article  PubMed  CAS  Google Scholar 

  48. Visnjic, D., Kalajzic, I., Gronowicz, G., Aguila, H. L., Clark, S. H., Lichtler, A. C., et al. (2001). Conditional ablation of the osteoblast lineage in Col2.3+ötk transgenic mice. J Bone Miner Res, 16, 2222–2231.

    Article  PubMed  CAS  Google Scholar 

  49. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    Google Scholar 

  50. Liu, F., Poursine-Laurent, J., & Link, D. C. (2000). Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood, 95, 3025–3031.

    PubMed  CAS  Google Scholar 

  51. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, Si, Kitamura, Y., et al. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.

    Article  PubMed  CAS  Google Scholar 

  52. Ma, Q., Jones, D., & Springer, T. A. (1999). The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity, 10, 463–471.

    Article  PubMed  CAS  Google Scholar 

  53. Semerad, C. L., Christopher, M. J., Liu, F., Short, B., Simmons, P. J., Winkler, I., et al. (2005). G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood, 106, 3020–3027.

    Article  PubMed  CAS  Google Scholar 

  54. Greenbaum, A. M., & Link, D. C. (2011). Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia, 25, 211–217.

    Article  PubMed  CAS  Google Scholar 

  55. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  56. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.

    Article  PubMed  CAS  Google Scholar 

  57. Usas, A., Maciulaitis, J., Maciulaitis, R., Jakuboniene, N., Milasius, A., & Huard, J. (2011). Skeletal muscle-derived stem cells: implications for cell-mediated therapies. Medicina (Kaunas.), 47, 469–479.

    Google Scholar 

  58. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  PubMed  Google Scholar 

  59. Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98, 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  60. Bolli, R., Chugh, A. R., D’Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (1926). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. The Lancet, 378, 1847–1857.

    Article  Google Scholar 

  61. Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., et al. (2010). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. The Lancet, 379, 895–904.

    Article  Google Scholar 

  62. Bollini, S., Smart, N., & Riley, P. R. (2011). Resident cardiac progenitor cells: at the heart of regeneration. Journal of Molecular and Cellular Cardiology, 50, 296–303.

    Article  PubMed  CAS  Google Scholar 

  63. Viragh, S., & Challice, C. E. (1981). The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat. Rec., 201, 157–168.

    Article  PubMed  CAS  Google Scholar 

  64. Tomanek, R. J. (2005). Formation of the coronary vasculature during development. Angiogenesis., 8, 273–284.

    Article  PubMed  Google Scholar 

  65. Chen, T. H., Chang, T. C., Kang, J. O., Choudhary, B., Makita, T., Tran, C. M., et al. (2002). Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev. Biol., 250, 198–207.

    Article  PubMed  CAS  Google Scholar 

  66. Katz, T., Singh, M., Degenhardt, K., Rivera-Feliciano, J., Johnson, R., Epstein, J., et al. (2012). Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell, 22, 639–650.

    Article  PubMed  CAS  Google Scholar 

  67. Limana, F., Bertolami, C., Mangoni, A., Di, C. A., Avitabile, D., Mocini, D., et al. (2010). Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J. Mol. Cell Cardiol., 48, 609–618.

    Article  PubMed  CAS  Google Scholar 

  68. Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011b). De novo cardiomyocytes from within the activated adult heart after injury. Nature. advance online publication.

  69. Cai, C. L., Martin, J. C., Sun, Y., Cui, L., Wang, L., Ouyang, K., et al. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature, 454, 104–108.

    Article  PubMed  CAS  Google Scholar 

  70. Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549–553.

    Article  PubMed  CAS  Google Scholar 

  71. Katz, T. C, Singh, M. K, Degenhardt, K., Rivera-Feliciano, J., Johnson, R. L., Epstein, J. A., et al. Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells. Developmental Cell, 22(3), 639–650. 13-3-2012b.

Ref Type: Abstract

  1. Christoffels, V. M., Grieskamp, T., Norden, J., Mommersteeg, M. T. M., Rudat, C., & Kispert, A. (2009). Tbx18 and the fate of epicardial progenitors. Nature, 458, E8–E9.

    Article  PubMed  CAS  Google Scholar 

  2. Riley, P. R., & Smart, N. (2011). Vascularizing the heart. Cardiovascular Research, 91, 260–268.

    Google Scholar 

  3. Zhou, B., Honor, L. B., Ma, Q., Oh, J. H., Lin, R. Z., Melero-Martin, J. M., et al. (2012). Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. Journal of Molecular and Cellular Cardiology, 52, 43–47.

    Article  PubMed  CAS  Google Scholar 

  4. Hannappel, E., & Wartenberg, F. (1993). Actin-sequestering ability of thymosin beta 4, thymosin beta 4 fragments, and thymosin beta 4-like peptides as assessed by the DNase I inhibition assay. Biol Chem. Hoppe Seyler, 374, 117–122.

    Article  PubMed  CAS  Google Scholar 

  5. Duan, J., Gherghe, C., Liu, D., Hamlett, E., Srikantha, L., Rodgers, L., et al. (2012). Wnt1/[beta]catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J, 31, 429–442.

    Article  CAS  Google Scholar 

  6. Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Belmonte, J. C. I. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606–609.

    Article  PubMed  CAS  Google Scholar 

  7. Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., et al. (2010). Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 464, 601–605.

    Article  PubMed  CAS  Google Scholar 

  8. Laugwitz, K. L., Moretti, A., Caron, L., Nakano, A., & Chien, K. R. (2008). Islet1 cardiovascular progenitors: a single source for heart lineages? Development, 135, 193–205.

    Article  PubMed  CAS  Google Scholar 

  9. Tomita, Y., Matsumura, K., Wakamatsu, Y., Matsuzaki, Y., Shibuya, I., Kawaguchi, H., et al. (2005). Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. The Journal of Cell Biology, 170, 1135–1146.

    Article  PubMed  CAS  Google Scholar 

  10. Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A. G., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  11. Mouquet, Fdr, Pfister, O., Jain, M., Oikonomopoulos, A., Ngoy, S., Summer, R., et al. (2005). Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circulation Research, 97, 1090–1092.

    Article  PubMed  CAS  Google Scholar 

  12. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.

    Article  PubMed  CAS  Google Scholar 

  13. Chong, J., Chandrakanthan, V., Xaymardan, M., Asli, N., Li, J., Ahmed, I., et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.

    Article  PubMed  CAS  Google Scholar 

  14. Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. E., & Bader, D. M. (2005). The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development, 132, 5317–5328.

    Article  PubMed  CAS  Google Scholar 

  15. Dettman, R. W., Denetclaw, J., Ordahl, C. P., & Bristow, J. (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Developmental Biology, 193, 169–181.

    Article  PubMed  CAS  Google Scholar 

  16. Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., et al. (2006). Stem cell niches in the adult mouse heart. Proc. Natl. Acad. Sci. U. S. A., 103, 9226–9231.

    Article  PubMed  CAS  Google Scholar 

  17. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303, 359–363.

    Article  PubMed  CAS  Google Scholar 

  18. Sato, T., van Es, J. H., Snippert, H. J., Stange, D. E., Vries, R. G., van den Born, M., et al. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415–418.

    Article  PubMed  CAS  Google Scholar 

  19. Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., et al. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122, 289–301.

    Article  PubMed  CAS  Google Scholar 

  20. Kuang, S., & Rudnicki, M. A. (2008). The emerging biology of satellite cells and their therapeutic potential. Trends in Molecular Medicine, 14, 82–91.

    Article  PubMed  CAS  Google Scholar 

  21. Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9, 493–495.

    Article  PubMed  CAS  Google Scholar 

  22. Hsu, Y. C., Pasolli, H. A., & Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell, 144, 92–105.

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh, P. C. H., Segers, V. F. M., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med, 13, 970–974.

    Article  PubMed  CAS  Google Scholar 

  24. Rudnicki, M. A., Le Grand, F., McKinnell, I., & Kuang, S. (2008). The molecular regulation of muscle stem cell function. Cold Spring Harbor Symposia on Quantitative Biology.

  25. Sanes, J. R. (2003). The basement membrane/basal lamina of skeletal muscle. Journal of Biological Chemistry, 278, 12601–12604.

    Article  PubMed  CAS  Google Scholar 

  26. Burkin, D. J., & Kaufman, S. J. (1999). The α7β1 integrin in muscle development and disease. Cell and Tissue Research, 296, 183–190.

    Article  PubMed  CAS  Google Scholar 

  27. DiMario, J., Buffinger, N., Yamada, S., & Strohman, R. C. (1989). Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science, 244, 688–690.

    Article  PubMed  CAS  Google Scholar 

  28. Tatsumi, R., Anderson, J. E., Nevoret, C. J., Halevy, O., & Allen, R. E. (1998). HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Developmental Biology, 194, 114–128.

    Article  PubMed  CAS  Google Scholar 

  29. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J., & Rando, T. A. (2008). A temporal switch from notch to wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell, 2, 50–59.

    Article  PubMed  CAS  Google Scholar 

  30. Cosgrove, B. D., Sacco, A., Gilbert, P. M., & Blau, H. M. (2009). A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation, 78, 185–194.

    Article  PubMed  CAS  Google Scholar 

  31. Ratajczak, M. Z., Majka, M., Kucia, M., Drukala, J., Pietrzkowski, Z., Peiper, S., et al. (2003). Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. STEM CELLS, 21, 363–371.

    Article  PubMed  CAS  Google Scholar 

  32. Sherwood, R. I., Christensen, J. L., Conboy, I. M., Conboy, M. J., Rando, T. A., Weissman, I. L., et al. (2004). Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell, 119, 543–554.

    Article  PubMed  CAS  Google Scholar 

  33. Riquelme, P. A., Drapeau, E., & Doetsch, F. (2008). Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 123–137.

    Article  Google Scholar 

  34. Miller, F. D., & Gauthier-Fisher, Ae. (2009). Home at last: neural stem cell niches defined. Cell Stem Cell, 4, 507–510.

    Article  PubMed  CAS  Google Scholar 

  35. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell, 3, 265–278.

    Article  PubMed  CAS  Google Scholar 

  36. Tavazoie, M., Van der Veken, L., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., et al. (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3, 279–288.

    Article  PubMed  CAS  Google Scholar 

  37. Kazanis, I., & ffrench-Constant, C. (2011). Extracellular matrix and the neural stem cell niche. Devel Neurobio, 71, 1006–1017.

    Article  CAS  Google Scholar 

  38. Lathia, J. D., Patton, B., Eckley, D. M., Magnus, T., Mughal, M. R., Sasaki, T., et al. (2007). Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J. Comp. Neurol., 505, 630–643.

    Article  PubMed  Google Scholar 

  39. Kazanis, I., Lathia, J. D., Vadakkan, T. J., Raborn, E., Wan, R., Mughal, M. R., et al. (2010). Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. The Journal of Neuroscience, 30, 9771–9781.

    Article  PubMed  CAS  Google Scholar 

  40. Loulier, K., Lathia, J. D., Marthiens, V., Relucio, J., Mughal, M. R., Tang, S. C., et al. (2009). β1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol, 7, e1000176.

    Article  PubMed  CAS  Google Scholar 

  41. Li, L., & Xie, T. (2005). Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol., 21, 605–631.

    Article  PubMed  CAS  Google Scholar 

  42. Zahn, J., Doormann, P., Dorn, A., & Dorn, D. C. (2007). Apoptosis of male germ-line stem cells after laser ablation of their niche. Stem Cell Research, 1, 75–85.

    Article  PubMed  Google Scholar 

  43. Blanpain, C.+., & Fuchs, E. (2006). Epidermal stem cells of the skin. Annual Review of Cell and Developmental Biology, 22, 339–373.

    Google Scholar 

  44. Dellatore, S. M., Garcia, A. S., & Miller, W. M. (2008). Mimicking stem cell niches to increase stem cell expansion. Current Opinion in Biotechnology, 19, 534–540.

    Article  PubMed  CAS  Google Scholar 

  45. Cheema, F. H., Polvani, G., Caglar, M. A., & Pesce, M. (2012). Combining stem cells and tissue engineering in cardiovascular repair—a step forward to derivation of novel implants with enhanced function and self-renewal characteristics. Recent Patents on Cardiovascular Drug Discovery.

  46. Jawad, H., Lyon, A. R., Harding, S. E., Ali, N. N., & Boccaccini, A. R. (2008). Myocardial tissue engineering. British Medical Bulletin, 87, 31–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all colleagues who have contributed to the recent technical and scientific advances in developmental, HSC, CSC and SC niche biology, including the authors of many papers not cited here due to space restriction. We would also like to thank Louisa Petchey and Sara Howard for editorial comments. P.R.R is funded by a British Heart Foundation Personal Chair Award (CH/11/1/28798) and British Heart Foundation Programme Grant (RG/08/003/25264) and G.M.B is funded by a Wellcome Trust 4 year PhD programme Grant in Developmental and Stem Cell Biology (WT/083345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balmer, G.M., Riley, P.R. Harnessing the Potential of Adult Cardiac Stem Cells: Lessons from Haematopoiesis, the Embryo and the Niche. J. of Cardiovasc. Trans. Res. 5, 631–640 (2012). https://doi.org/10.1007/s12265-012-9386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9386-3

Keywords

Navigation