Skip to main content

Advertisement

Log in

Epicardial Progenitor Cells in Cardiac Development and Regeneration

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The epicardium forms an epithelial layer on the surface of the heart. It is derived from a cluster of mesothelial cells, which is termed the proepicardium. The proepicardium gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells, fibroblast, and possibly endothelial cells. In this review, the formation of the proepicardium is discussed. Marker genes, suitable to identify these cells in the embryo and in the adult, are introduced. Recent evidence suggests that the PE is made up of distinct cell populations. These cell lineages can be distinguished on the basis of marker gene expression and differ in their differentiation potential. The role of the epicardium as a resource for cardiac stem cells and its importance in cardiac regeneration is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65, 40–51.

    Article  PubMed  CAS  Google Scholar 

  2. Männer, J. (1992). The development of pericardial villi in the chick embryo. Anatomy and Embryology, 186, 379–385.

    Article  PubMed  Google Scholar 

  3. Männer, J. (1993). Experimental study on the formation of the epicardium in chick embryos. Anatomy and Embryology, 187, 281–289.

    Article  PubMed  Google Scholar 

  4. Schlueter J, Brand T (2011) Origin and fates of the proepicardium. Aswan Heart Centre Science & Practice Series 2011(2):11. doi:10.5339/ahcsps.2011.11

  5. Tremblay, K. D. (2011). Inducing the liver: understanding the signals that promote murine liver budding. Journal of Cellular Physiology, 226, 1727–1731.

    Article  PubMed  CAS  Google Scholar 

  6. Ishii, Y., Langberg, J. D., Hurtado, R., Lee, S., & Mikawa, T. (2007). Induction of proepicardial marker gene expression by the liver bud. Development, 134, 3627–3637.

    Article  PubMed  CAS  Google Scholar 

  7. Schulte, I., Schlueter, J., Abu-Issa, R., Brand, T., & Manner, J. (2007). Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Developmental Dynamics, 236, 684–695.

    Article  PubMed  Google Scholar 

  8. Liu, J., & Stainier, D. Y. (2010). Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circulation Research, 106, 1818–1828.

    Article  PubMed  CAS  Google Scholar 

  9. Nahirney, P. C., Mikawa, T., & Fischman, D. A. (2003). Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Developmental Dynamics, 227, 511–523.

    Article  PubMed  Google Scholar 

  10. Perez-Pomares, J. M., & de la Pompa, J. L. (2011). Signaling during epicardium and coronary vessel development. Circulation Research, 109, 1429–1442.

    Article  PubMed  CAS  Google Scholar 

  11. Viragh, S., & Challice, C. E. (1981). The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anatomical Record, 201, 157–168.

    Article  PubMed  CAS  Google Scholar 

  12. Viragh, S., Gittenberger-de Groot, A. C., Poelmann, R. E., & Kalman, F. (1993). Early development of quail heart epicardium and associated vascular and glandular structures. Anatomy and Embryology, 188, 381–393.

    Article  PubMed  CAS  Google Scholar 

  13. Schlueter, J., Manner, J., & Brand, T. (2006). BMP is an important regulator of proepicardial identity in the chick embryo. Developmental Biology, 295, 546–558.

    Article  PubMed  CAS  Google Scholar 

  14. van Wijk, B., van den Berg, G., Abu-Issa, R., Barnett, P., van der Velden, S., Schmidt, M., Ruijter, J. M., Kirby, M. L., Moorman, A. F., & van den Hoff, M. J. (2009). Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circulation Research, 105, 431–441.

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Pomares, J. M., Phelps, A., Sedmerova, M., Carmona, R., Gonzalez-Iriarte, M., Munoz-Chapuli, R., & Wessels, A. (2002). Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Developmental Biology, 247, 307–326.

    Article  PubMed  CAS  Google Scholar 

  16. Xavier-Neto, J., Shapiro, M. D., Houghton, L., & Rosenthal, N. (2000). Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Developmental Biology, 219, 129–141.

    Article  PubMed  CAS  Google Scholar 

  17. Greulich, F., Rudat, C., & Kispert, A. (2011). Mechanisms of T-box gene function in the developing heart. Cardiovascular Research, 91, 212–222.

    Article  PubMed  CAS  Google Scholar 

  18. Haenig, B., & Kispert, A. (2004). Analysis of TBX18 expression in chick embryos. Development Genes and Evolution, 214, 407–411.

    Article  PubMed  CAS  Google Scholar 

  19. Torlopp, A., Schlueter, J., & Brand, T. (2010). Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Developmental Dynamics, 239, 2393–2403.

    Article  PubMed  CAS  Google Scholar 

  20. Schlueter, J., & Brand, T. (2009). A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proceedings of the National Academy of Sciences of the United States of America, 106, 7485–7490.

    Article  PubMed  CAS  Google Scholar 

  21. Jahr, M., Schlueter, J., Brand, T., & Manner, J. (2008). Development of the proepicardium in Xenopus laevis. Developmental Dynamics, 237, 3088–3096.

    Article  PubMed  Google Scholar 

  22. Christoffels, V. M., Grieskamp, T., Norden, J., Mommersteeg, M. T., Rudat, C., & Kispert, A. (2009). Tbx18 and the fate of epicardial progenitors. Nature, 458, E8–E9.

    Article  PubMed  CAS  Google Scholar 

  23. Cai, C. L., Martin, J. C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X., Stallcup, W. B., Denton, C. P., McCulloch, A., Chen, J., & Evans, S. M. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature, 454, 104–108.

    Article  PubMed  CAS  Google Scholar 

  24. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D., & Schedl, A. (1999). YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development, 126, 1845–1857.

    PubMed  CAS  Google Scholar 

  25. von Gise, A., Zhou, B., Honor, L. B., Ma, Q., Petryk, A., & Pu, W. T. (2011). WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Developmental Biology, 356, 421–431.

    Article  CAS  Google Scholar 

  26. Martinez-Estrada, O. M., Lettice, L. A., Essafi, A., Guadix, J. A., Slight, J., Velecela, V., Hall, E., Reichmann, J., Devenney, P. S., Hohenstein, P., Hosen, N., Hill, R. E., Munoz-Chapuli, R., & Hastie, N. D. (2010). Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nature Genetics, 42, 89–93.

    Article  PubMed  CAS  Google Scholar 

  27. Guadix, J. A., Ruiz-Villalba, A., Lettice, L., Velecela, V., Munoz-Chapuli, R., Hastie, N. D., Perez-Pomares, J. M., & Martinez-Estrada, O. M. (2011). Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development, 138, 1093–1097.

    Article  PubMed  CAS  Google Scholar 

  28. Carmona, R., Gonzalez-Iriarte, M., Perez-Pomares, J. M., & Munoz-Chapuli, R. (2001). Localization of the Wilm’s tumour protein WT1 in avian embryos. Cell and Tissue Research, 303, 173–186.

    Article  PubMed  CAS  Google Scholar 

  29. Robb, L., Mifsud, L., Hartley, L., Biben, C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., & Harvey, R. P. (1998). Epicardin: a novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Developmental Dynamics, 213, 105–113.

    Article  PubMed  CAS  Google Scholar 

  30. Quaggin, S. E., Vanden Heuvel, G. B., & Igarashi, P. (1998). Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mechanisms of Development, 71, 37–48.

    Article  PubMed  CAS  Google Scholar 

  31. Lu, J., Richardson, J. A., & Olson, E. N. (1998). Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mechanisms of Development, 73, 23–32.

    Article  PubMed  CAS  Google Scholar 

  32. Funato, N., Ohyama, K., Kuroda, T., & Nakamura, M. (2003). Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppresses differentiation by negative regulation of transcription. Journal of Biological Chemistry, 278, 7486–7493.

    Article  PubMed  CAS  Google Scholar 

  33. Lu, J. R., Bassel-Duby, R., Hawkins, A., Chang, P., Valdez, R., Wu, H., Gan, L., Shelton, J. M., Richardson, J. A., & Olson, E. N. (2002). Control of facial muscle development by MyoR and capsulin. Science, 298, 2378–2381.

    Article  PubMed  CAS  Google Scholar 

  34. Lu, J., Chang, P., Richardson, J. A., Gan, L., Weiler, H., & Olson, E. N. (2000). The basic helix-loop-helix transcription factor capsulin controls spleen organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 97, 9525–9530.

    Article  PubMed  CAS  Google Scholar 

  35. Acharya, A., Baek, S. T., Banfi, S., Eskiocak, B., & Tallquist, M. D. (2011). Efficient inducible Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney. Genesis, 49, 870–877.

    Article  PubMed  CAS  Google Scholar 

  36. Shen, M. M. (2007). Nodal signaling: developmental roles and regulation. Development, 134, 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  37. Jenkins, S. J., Hutson, D. R., & Kubalak, S. W. (2005). Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium. Developmental Dynamics, 233, 1091–1101.

    Article  PubMed  CAS  Google Scholar 

  38. Azambuja, A. P., Portillo-Sanchez, V., Rodrigues, M. V., Omae, S. V., Schechtman, D., Strauss, B. E., Costanzi-Strauss, E., Krieger, J. E., Perez-Pomares, J. M., & Xavier-Neto, J. (2010). Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis. Circulation Research, 107, 204–216.

    Article  PubMed  CAS  Google Scholar 

  39. Kikuchi, K., Holdway, J. E., Major, R. J., Blum, N., Dahn, R. D., Begemann, G., & Poss, K. D. (2011). Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Developmental Cell, 20, 397–404.

    Article  PubMed  CAS  Google Scholar 

  40. Wagner, N., Morrison, H., Pagnotta, S., Michiels, J. F., Schwab, Y., Tryggvason, K., Schedl, A., & Wagner, K. D. (2011). The podocyte protein nephrin is required for cardiac vessel formation. Human Molecular Genetics, 20, 2182–2194.

    Article  PubMed  CAS  Google Scholar 

  41. Muller, P. S., Schulz, R., Maretto, S., Costello, I., Srinivas, S., Bikoff, E., & Robertson, E. (2011). The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis. Development, 138, 1297–1308.

    Article  PubMed  CAS  Google Scholar 

  42. Facucho-Oliveira, J., Bento, M., & Belo, J. A. (2011). Ccbe1 expression marks the cardiac and lymphatic progenitor lineages during early stages of mouse development. International Journal of Developmental Biology, 55, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  43. Katz, T. C., Singh, M. K., Degenhardt, K., Rivera-Feliciano, J., Johnson, R. L., Epstein, J. A., & Tabin, C. J. (2012). Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Developmental Cell, 22, 639–650.

    Article  PubMed  CAS  Google Scholar 

  44. Bochmann, L., Sarathchandra, P., Mori, F., Lara-Pezzi, E., Lazzaro, D., & Rosenthal, N. (2010). Revealing new mouse epicardial cell markers through transcriptomics. PLoS One, 5, e11429.

    Article  PubMed  CAS  Google Scholar 

  45. Pombal, M. A., Carmona, R., Megias, M., Ruiz, A., Perez-Pomares, J. M., & Munoz-Chapuli, R. (2008). Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evolution and Development, 10, 210–216.

    Article  PubMed  Google Scholar 

  46. Saga, Y., Kitajima, S., & Miyagawa-Tomita, S. (2000). Mesp1 expression is the earliest sign of cardiovascular development. Trends in Cardiovascular Medicine, 10, 345–352.

    Article  PubMed  CAS  Google Scholar 

  47. Stanley, E. G., Biben, C., Elefanty, A., Barnett, L., Koentgen, F., Robb, L., & Harvey, R. P. (2002). Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3′UTR-ires-Cre allele of the homeobox gene Nkx2-5. International Journal of Developmental Biology, 46, 431–439.

    PubMed  CAS  Google Scholar 

  48. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., & Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5, 877–889.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K. R., & Pu, W. T. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454, 109–113.

    Article  PubMed  CAS  Google Scholar 

  50. Ma, Q., Zhou, B., & Pu, W. T. (2008). Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Developmental Biology, 323, 98–104.

    Article  PubMed  CAS  Google Scholar 

  51. Barnes, R. M., Firulli, B. A., VanDusen, N. J., Morikawa, Y., Conway, S. J., Cserjesi, P., Vincentz, J. W., & Firulli, A. B. (2011). Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development. Circulation Research, 108, 940–949.

    Article  PubMed  CAS  Google Scholar 

  52. Watt, A. J., Battle, M. A., Li, J., & Duncan, S. A. (2004). GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12573–12578.

    Article  PubMed  CAS  Google Scholar 

  53. Kruithof, B. P., van Wijk, B., Somi, S., Kruithof-de Julio, M., Perez Pomares, J. M., Weesie, F., Wessels, A., Moorman, A. F., & van den Hoff, M. J. (2006). BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Developmental Biology, 295, 507–522.

    Article  PubMed  CAS  Google Scholar 

  54. del Monte, G., Casanova, J. C., Guadix, J. A., MacGrogan, D., Burch, J. B., Perez-Pomares, J. M., & de la Pompa, J. L. (2011). Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circulation Research, 108, 824–836.

    Article  PubMed  CAS  Google Scholar 

  55. Rojas, A., De Val, S., Heidt, A. B., Xu, S. M., Bristow, J., & Black, B. L. (2005). Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development, 132, 3405–3417.

    Article  PubMed  CAS  Google Scholar 

  56. Urness, L. D., Bleyl, S. B., Wright, T. J., Moon, A. M., & Mansour, S. L. (2011). Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Developmental Biology, 356, 383–397.

    Article  PubMed  CAS  Google Scholar 

  57. Buermans, H. P., van Wijk, B., Hulsker, M. A., Smit, N. C., den Dunnen, J. T., van Ommen, G. B., Moorman, A. F., van den Hoff, M. J., & ‘t Hoen, P. A. (2010). Comprehensive gene-expression survey identifies wif1 as a modulator of cardiomyocyte differentiation. PLoS One, 5, e15504.

    Article  PubMed  CAS  Google Scholar 

  58. Phillips, M. D., Mukhopadhyay, M., Poscablo, C., & Westphal, H. (2010). Dkk1 and Dkk2 regulate epicardial specification during mouse heart development. International Journal of Cardiology, 150, 186–192.

    Article  PubMed  Google Scholar 

  59. Merki, E., Zamora, M., Raya, A., Kawakami, Y., Wang, J., Zhang, X., Burch, J., Kubalak, S. W., Kaliman, P., Belmonte, J. C., Chien, K. R., & Ruiz-Lozano, P. (2005). Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences of the United States of America, 102, 18455–18460.

    Article  PubMed  CAS  Google Scholar 

  60. Zamora, M., Manner, J., & Ruiz-Lozano, P. (2007). Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proceedings of the National Academy of Sciences of the United States of America, 104, 18109–18114.

    Article  PubMed  CAS  Google Scholar 

  61. Levin, M., Thorlin, T., Robinson, K., Nogi, T., & Mercola, M. (2002). Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell, 111, 77–98.

    Article  PubMed  CAS  Google Scholar 

  62. Schlueter, J., & Brand, T. (2007). Left-right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos. Cytogenetic and Genome Research, 117, 256–267.

    Article  PubMed  CAS  Google Scholar 

  63. Boettger, T., Wittler, L., & Kessel, M. (1999). FGF8 functions in the specification of the right body side of the chick. Current Biology, 9, 277–280.

    Article  PubMed  CAS  Google Scholar 

  64. Patel, K., Isaac, A., & Cooke, J. (1999). Nodal signalling and the roles of the transcription factors SnR and Pitx2 in vertebrate left-right asymmetry. Current Biology, 9, 609–612.

    Article  PubMed  CAS  Google Scholar 

  65. Isaac, A., Sargent, M. G., & Cooke, J. (1997). Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science, 275(5304), 1301–1304.

    Article  PubMed  CAS  Google Scholar 

  66. Rodgers, L. S., Lalani, S., Runyan, R. B., & Camenisch, T. D. (2008). Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Developmental Dynamics, 237, 145–152.

    Article  PubMed  Google Scholar 

  67. Sejima, H., Isokawa, K., Shimizu, O., Morikawa, T., Ootsu, H., Numata, K., Fukai, M., Kubota, S., & Toda, Y. (2001). Possible participation of isolated epicardial cell clusters in the formation of chick embryonic epicardium. Journal of Oral Science, 43, 109–116.

    Article  PubMed  CAS  Google Scholar 

  68. Komiyama, M., Ito, K., & Shimada, Y. (1987). Origin and development of the epicardium in the mouse embryo. Anatomy and Embryology, 176, 183–189.

    Article  PubMed  CAS  Google Scholar 

  69. Fransen, M. E., & Lemanski, L. F. (1990). Epicardial development in the axolotl, Ambystoma mexicanum. Anatomical Record, 226, 228–236.

    Article  PubMed  CAS  Google Scholar 

  70. Serluca, F. C. (2008). Development of the proepicardial organ in the zebrafish. Developmental Biology, 315, 18–27.

    Article  PubMed  CAS  Google Scholar 

  71. Icardo, J. M., Guerrero, A., Duran, A. C., Colvee, E., Domezain, A., & Sans-Coma, V. (2009). The development of the epicardium in the sturgeon Acipenser naccarii. Anatomical Record, 292, 1593–1601.

    Article  Google Scholar 

  72. Mikawa, T., & Fischman, D. A. (1992). Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proceedings of the National Academy of Sciences of the United States of America, 89, 9504–9508.

    Article  PubMed  CAS  Google Scholar 

  73. Männer, J. (1999). Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anatomical Record, 255, 212–226.

    Article  PubMed  Google Scholar 

  74. Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174, 221–232.

    Article  PubMed  CAS  Google Scholar 

  75. Dettman, R. W., Denetclaw, W., Jr., Ordahl, C. P., & Bristow, J. (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Developmental Biology, 193, 169–181.

    Article  PubMed  CAS  Google Scholar 

  76. Poelmann, R. E., Gittenberger-de Groot, A. C., Mentink, M. M., Bokenkamp, R., & Hogers, B. (1993). Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circulation Research, 73, 559–568.

    Article  PubMed  CAS  Google Scholar 

  77. Cossette, S., & Misra, R. (2011). The identification of different endothelial cell populations within the mouse proepicardium. Developmental Dynamics, 240, 2344–2353.

    Article  PubMed  Google Scholar 

  78. Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549–553.

    Article  PubMed  CAS  Google Scholar 

  79. Grieskamp, T., Rudat, C., Ludtke, T. H., Norden, J., & Kispert, A. (2011). Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circulation Research, 108, 812–823.

    Article  CAS  Google Scholar 

  80. Guadix, J. A., Carmona, R., Munoz-Chapuli, R., & Perez-Pomares, J. M. (2006). In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Developmental Dynamics, 235, 1014–1026.

    Article  PubMed  CAS  Google Scholar 

  81. Kikuchi, K., Gupta, V., Wang, J., Holdway, J. E., Wills, A. A., Fang, Y., & Poss, K. D. (2011). tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development, 138, 2895–2902.

    Article  PubMed  CAS  Google Scholar 

  82. Smith, C. L., Baek, S. T., Sung, C. Y., & Tallquist, M. D. (2011). Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circulation Research, 108, e15–e26.

    Article  PubMed  CAS  Google Scholar 

  83. Ishii, Y., Garriock, R. J., Navetta, A. M., Coughlin, L. E., & Mikawa, T. (2010). BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Developmental Cell, 19, 307–316.

    Article  PubMed  CAS  Google Scholar 

  84. Yang, J. T., Rayburn, H., & Hynes, R. O. (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development, 121, 549–560.

    PubMed  CAS  Google Scholar 

  85. Kwee, L., Baldwin, H. S., Shen, H. M., Stewart, C. L., Buck, C., Buck, C. A., & Labow, M. A. (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development, 121, 489–503.

    PubMed  CAS  Google Scholar 

  86. Sengbusch, J. K., He, W., Pinco, K. A., & Yang, J. T. (2002). Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. The Journal of Cell Biology, 157, 873–882.

    Article  PubMed  CAS  Google Scholar 

  87. Hirose, T., Karasawa, M., Sugitani, Y., Fujisawa, M., Akimoto, K., Ohno, S., & Noda, T. (2006). PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development, 133, 1389–1398.

    Article  PubMed  CAS  Google Scholar 

  88. Wu, M., Smith, C. L., Hall, J. A., Lee, I., Luby-Phelps, K., & Tallquist, M. D. (2010). Epicardial spindle orientation controls cell entry into the myocardium. Developmental Cell, 19, 114–125.

    Article  PubMed  CAS  Google Scholar 

  89. Pennisi, D. J., Ballard, V. L., & Mikawa, T. (2003). Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Developmental Dynamics, 228, 161–172.

    Article  PubMed  CAS  Google Scholar 

  90. Lavine, K. J., Yu, K., White, A. C., Zhang, X., Smith, C., Partanen, J., & Ornitz, D. M. (2005). Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Developmental Cell, 8, 85–95.

    Article  PubMed  CAS  Google Scholar 

  91. Lavine, K. J., White, A. C., Park, C., Smith, C. S., Choi, K., Long, F., Hui, C. C., & Ornitz, D. M. (2006). Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes & Development, 20, 1651–1666.

    Article  CAS  Google Scholar 

  92. Kang, J., Gu, Y., Li, P., Johnson, B. L., Sucov, H. M., & Thomas, P. S. (2008). PDGF-A as an epicardial mitogen during heart development. Developmental Dynamics, 237, 692–701.

    Article  PubMed  CAS  Google Scholar 

  93. Li, P., Cavallero, S., Gu, Y., Chen, T. H., Hughes, J., Hassan, A. B., Bruning, J. C., Pashmforoush, M., & Sucov, H. M. (2011). IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development, 138, 1795–1805.

    Article  PubMed  CAS  Google Scholar 

  94. Sucov, H. M., Dyson, E., Gumeringer, C. L., Price, J., Chien, K. R., & Evans, R. M. (1994). RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes & Development, 8, 1007–1018.

    Article  CAS  Google Scholar 

  95. Tran, C. M., & Sucov, H. M. (1998). The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis. Development, 125, 1951–1956.

    PubMed  CAS  Google Scholar 

  96. Kastner, P., Grondona, J. M., Mark, M., Gansmuller, A., LeMeur, M., Decimo, D., Vonesch, J. L., Dolle, P., & Chambon, P. (1994). Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell, 78, 987–1003.

    Article  PubMed  CAS  Google Scholar 

  97. Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Bergwerff, M., Mentink, M. M., & Poelmann, R. E. (2000). Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circulation Research, 87, 969–971.

    Article  PubMed  CAS  Google Scholar 

  98. Männer, J., Schlueter, J., & Brand, T. (2005). Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Developmental Dynamics, 233, 1454–1463.

    Article  PubMed  Google Scholar 

  99. Wu, H., Lee, S., Gao, J., Liu, X., & Iruela-Arispe, M. (1999). Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development, 126, 3597–3605.

    PubMed  CAS  Google Scholar 

  100. Stuckmann, I., Evans, S., & Lassar, A. B. (2003). Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Developmental Biology, 255, 334–349.

    Article  PubMed  CAS  Google Scholar 

  101. Brade, T., Kumar, S., Cunningham, T. J., Chatzi, C., Zhao, X., Cavallero, S., Li, P., Sucov, H. M., Ruiz-Lozano, P., & Duester, G. (2011). Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development, 138, 139–148.

    Article  PubMed  CAS  Google Scholar 

  102. Mima, T., Ueno, H., Fischman, D. A., Williams, L. T., & Mikawa, T. (1995). Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proceedings of the National Academy of Sciences of the United States of America, 92, 467–471.

    Article  PubMed  CAS  Google Scholar 

  103. Chen, T. H., Chang, T. C., Kang, J. O., Choudhary, B., Makita, T., Tran, C. M., Burch, J. B., Eid, H., & Sucov, H. M. (2002). Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Developmental Biology, 250, 198–207.

    Article  PubMed  CAS  Google Scholar 

  104. Drenckhahn, J. D., Schwarz, Q. P., Gray, S., Laskowski, A., Kiriazis, H., Ming, Z., Harvey, R. P., Du, X. J., Thorburn, D. R., & Cox, T. C. (2008). Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Developmental Cell, 15, 521–533.

    Article  PubMed  CAS  Google Scholar 

  105. Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., & Sadek, H. A. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078–1080.

    Article  PubMed  CAS  Google Scholar 

  106. Choi, W. Y., & Poss, K. D. (2012). Cardiac regeneration. Current Topics in Developmental Biology, 100, 319–344.

    Article  PubMed  Google Scholar 

  107. Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., & Poss, K. D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607–619.

    Article  PubMed  CAS  Google Scholar 

  108. Schnabel, K., Wu, C. C., Kurth, T., & Weidinger, G. (2011). Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One, 6, e18503.

    Article  PubMed  CAS  Google Scholar 

  109. Gonzalez-Rosa, J. M., Martin, V., Peralta, M., Torres, M., & Mercader, N. (2011). Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development, 138, 1663–1674.

    Article  PubMed  CAS  Google Scholar 

  110. Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., Evans, T., Macrae, C. A., Stainier, D. Y., & Poss, K. D. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464, 601–605.

    Article  PubMed  CAS  Google Scholar 

  111. Kim, J., Wu, Q., Zhang, Y., Wiens, K. M., Huang, Y., Rubin, N., Shimada, H., Handin, R. I., Chao, M. Y., Tuan, T. L., Starnes, V. A., & Lien, C. L. (2010). PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proceedings of the National Academy of Sciences of the United States of America, 107, 17206–17210.

    Article  PubMed  CAS  Google Scholar 

  112. Mellgren, A. M., Smith, C. L., Olsen, G. S., Eskiocak, B., Zhou, B., Kazi, M. N., Ruiz, F. R., Pu, W. T., & Tallquist, M. D. (2008). Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circulation Research, 103, 1393–1401.

    Article  PubMed  CAS  Google Scholar 

  113. Limana, F., Bertolami, C., Mangoni, A., Di Carlo, A., Avitabile, D., Mocini, D., Iannelli, P., De Mori, R., Marchetti, C., Pozzoli, O., Gentili, C., Zacheo, A., Germani, A., & Capogrossi, M. C. (2010). Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. Journal of Molecular and Cellular Cardiology, 48, 609–618.

    Article  PubMed  CAS  Google Scholar 

  114. Wagner, K. D., Wagner, N., Bondke, A., Nafz, B., Flemming, B., Theres, H., & Scholz, H. (2002). The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. The FASEB Journal, 16, 1117–1119.

    CAS  Google Scholar 

  115. Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., Lin, R. Z., Melero-Martin, J. M., Dolmatova, E., Duffy, H. S., Gise, A., Zhou, P., Hu, Y. W., Wang, G., Zhang, B., Wang, L., Hall, J. L., Moses, M. A., McGowan, F. X., & Pu, W. T. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. The Journal of Clinical Investigation, 121, 1894–1904.

    Article  PubMed  CAS  Google Scholar 

  116. Russell, J. L., Goetsch, S. C., Gaiano, N. R., Hill, J. A., Olson, E. N., & Schneider, J. W. (2011). A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circulation Research, 108, 51–59.

    Article  PubMed  CAS  Google Scholar 

  117. Duan, J., Gherghe, C., Liu, D., Hamlett, E., Srikantha, L., Rodgers, L., Regan, J. N., Rojas, M., Willis, M., Leask, A., Majesky, M., & Deb, A. (2012). Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO Journal, 31, 429–442.

    Article  CAS  Google Scholar 

  118. Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., De Mori, R., Battistini, L., Vigna, E., Santini, M., Loiaconi, V., Pompilio, G., Germani, A., & Capogrossi, M. C. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  119. Lien, C. L., Schebesta, M., Makino, S., Weber, G. J., & Keating, M. T. (2006). Gene expression analysis of zebrafish heart regeneration. PLoS Biology, 4, e260.

    Article  PubMed  CAS  Google Scholar 

  120. Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R., & Riley, P. R. (2007). Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature, 445, 177–182.

    Article  PubMed  CAS  Google Scholar 

  121. Banerjee, I., Zhang, J., Moore-Morris, T., Lange, S., Shen, T., Dalton, N. D., Gu, Y., Peterson, K. L., Evans, S. M., & Chen, J. (2012). Thymosin beta 4 is dispensable for murine cardiac development and function. Circulation Research, 110, 456–464.

    Article  PubMed  CAS  Google Scholar 

  122. Bock-Marquette, I., Saxena, A., White, M. D., Michael Dimaio, J., & Srivastava, D. (2004). Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature, 432, 466–472.

    Article  PubMed  CAS  Google Scholar 

  123. Bock-Marquette, I., Shrivastava, S., Pipes, G. C., Thatcher, J. E., Blystone, A., Shelton, J. M., Galindo, C. L., Melegh, B., Srivastava, D., Olson, E. N., & DiMaio, J. M. (2009). Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. Journal of Molecular and Cellular Cardiology, 46, 728–738.

    Article  PubMed  CAS  Google Scholar 

  124. Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., Yellon, D., Riegler, J., Price, A. N., Lythgoe, M. F., Pu, W. T., & Riley, P. R. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.

    Article  PubMed  CAS  Google Scholar 

  125. Zhou, B., Honor, L. B., Ma, Q., Oh, J. H., Lin, R. Z., Melero-Martin, J. M., von Gise, A., Zhou, P., Hu, T., He, L., Wu, K. H., Zhang, H., Zhang, Y., & Pu, W. T. (2012). Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. Journal of Molecular and Cellular Cardiology, 52, 43–47.

    Article  PubMed  CAS  Google Scholar 

  126. Weeke-Klimp, A., Bax, N. A., Bellu, A. R., Winter, E. M., Vrolijk, J., Plantinga, J., Maas, S., Brinker, M., Mahtab, E. A., Gittenberger-de Groot, A. C., van Luyn, M. J., Harmsen, M. C., & Lie-Venema, H. (2010). Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. Journal of Molecular and Cellular Cardiology, 49, 606–616.

    Article  PubMed  CAS  Google Scholar 

  127. Eid, H., Larson, D. M., Springhorn, J. P., Attawia, M. A., Nayak, R. C., Smith, T. W., & Kelly, R. A. (1992). Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circulation Research, 71, 40–50.

    Article  PubMed  CAS  Google Scholar 

  128. Eid, H., de Bold, M. L., Chen, J. H., & de Bold, A. J. (1994). Epicardial mesothelial cells synthesize and release endothelin. Journal of Cardiovascular Pharmacology, 24, 715–720.

    Article  PubMed  CAS  Google Scholar 

  129. Olivotto, I., Cecchi, F., Poggesi, C., & Yacoub, M. H. (2009). Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nature Reviews Cardiology, 6, 317–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlueter, J., Brand, T. Epicardial Progenitor Cells in Cardiac Development and Regeneration. J. of Cardiovasc. Trans. Res. 5, 641–653 (2012). https://doi.org/10.1007/s12265-012-9377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9377-4

Keywords

Navigation