Skip to main content

Advertisement

Log in

Abstract

Stem cells in adult organs reside in specialized niches that regulate their proliferation and differentiation. Investigations during the last few years have unveiled a regulatory role for blood vessels in these microenvironments. Mesenchymal stem cells (MSCs) are located surrounding capillaries in a variety of tissues and have the capacity to differentiate into different mesodermal lineages. Angiogenic progenitor cells have also been found in the adventitial layer of large vessels. In the bone marrow, endothelial cells control hematopoietic stem cell (HSC) release, and in the brain, blood vessels regulate neural stem cell (NSC) self-renewal and neurogenesis. Similarly, perivascular progenitor cells have also been found in the heart. This intimate connection between stem cells and the vasculature contributes to tissue homeostasis and repair. In this review, we focus on the regulation of stem and progenitor cells in different adult niches by blood vessels and the few mechanisms that are known to mediate this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yin, T., & Li, L. (2006). The stem cell niches in bone. The Journal of Clinical Investigation, 116, 1195–1201.

    PubMed  CAS  Google Scholar 

  2. Yoshida, S., Sukeno, M., & Nabeshima, Y. (2007). A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science, 317, 1722–1726.

    PubMed  CAS  Google Scholar 

  3. Christov, C., Chrétien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., et al. (2007). Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Molecular and Cellular Biology, 18, 1397–1409.

    CAS  Google Scholar 

  4. Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.

    PubMed  CAS  Google Scholar 

  5. Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Reviews. Cancer, 7, 733–736.

    PubMed  CAS  Google Scholar 

  6. Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    PubMed  CAS  Google Scholar 

  7. Zymek, P., Bujak, M., Chatila, K., Cieslak, A., Thakker, G., Entman, M. L., et al. (2006). The role of platelet-derived growth factor signaling in healing myocardial infarcts. Journal of the American College of Cardiology, 48, 2315–2323.

    PubMed  CAS  Google Scholar 

  8. Kim, J., Wu, Q., Zhang, Y., Wiens, K. M., Huang, Y., Rubin, N., et al. (2010). PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proceedings of the National Academy of Sciences of the United States of America, 107, 17206–17210.

    PubMed  CAS  Google Scholar 

  9. Crisan, M., Yap, S., Casteilla, L., Chen, C.-W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    PubMed  CAS  Google Scholar 

  10. Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.

    PubMed  CAS  Google Scholar 

  11. Corselli, M., Chen, C.-W., Crisan, M., Lazzari, L., & Péault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1104–1109.

    PubMed  CAS  Google Scholar 

  12. Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 12, 126–131.

    PubMed  CAS  Google Scholar 

  13. Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.

    PubMed  CAS  Google Scholar 

  14. Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.

    PubMed  Google Scholar 

  15. Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–834.

    PubMed  CAS  Google Scholar 

  16. Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1210–1221.

    PubMed  Google Scholar 

  17. Fernández-Avilés, F., JaS, R., García-Frade, J., Fernández, M. E., Peñarrubia, M. J., Fuente, L. D. L., et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95, 742–748.

    PubMed  Google Scholar 

  18. Williams, A. R., Trachtenberg, B., Velazquez, D. L., Mcniece, I., Altman, P., Rouy, D., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108, 792–796.

    PubMed  CAS  Google Scholar 

  19. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    PubMed  CAS  Google Scholar 

  20. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.

    PubMed  CAS  Google Scholar 

  21. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    PubMed  Google Scholar 

  22. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.

    PubMed  CAS  Google Scholar 

  23. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–736.

    PubMed  CAS  Google Scholar 

  24. Majesky, M. W., Dong, X. R., Hoglund, V., Mahoney, W. M., & Daum, G. (2011). The adventitia: a dynamic interface containing resident progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1530–1539.

    PubMed  CAS  Google Scholar 

  25. Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105, 2783–2786.

    PubMed  CAS  Google Scholar 

  26. Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133, 1543–1551.

    PubMed  CAS  Google Scholar 

  27. Pasquinelli, G., Tazzari, P. L., Vaselli, C., Foroni, L., Buzzi, M., Storci, G., et al. (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25, 1627–1634.

    PubMed  CAS  Google Scholar 

  28. Klein, D., Weißhardt, P., Kleff, V., Jastrow, H., Jakob, H. G., & Ergün, S. (2011). Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One, 6, e20540.

    PubMed  CAS  Google Scholar 

  29. Corselli, M., Chen, C. W., Sun, B., Yap, S., Rubin, J. P., Péault, B. (2011). The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Development Epub ahead of print.

  30. Invernici, G., Emanueli, C., Madeddu, P., Cristini, S., Gadau, S., Benetti, A., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. The American Journal of Pathology, 170, 1879–1892.

    PubMed  CAS  Google Scholar 

  31. Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Kränkel, N., Katare, R., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.

    PubMed  Google Scholar 

  32. Katare, R., Riu, F., Mitchell, K., Gubernator, M., Campagnolo, P., Cui, Y., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109, 894–906.

    PubMed  CAS  Google Scholar 

  33. Passman, J. N., Dong, X. R., Wu, S.-P., Maguire, C. T., Hogan, K. A., Bautch, V. L., et al. (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9349–9354.

    PubMed  CAS  Google Scholar 

  34. Hu, Y., Zhang, Z., Torsney, E., Afzal, A. R., Davison, F., Metzler, B., et al. (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. The Journal of Clinical Investigation, 113, 1258–1265.

    PubMed  CAS  Google Scholar 

  35. Psaltis, P. J., Harbuzariu, A., Delacroix, S., Witt, T. A., Holroyd, E. W., Spoon, D. B., et al. (2012). Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta/clinical perspective. Circulation, 125, 592–603.

    PubMed  Google Scholar 

  36. Coskun, S., & Hirschi, K. K. (2010). Establishment and regulation of the HSC niche: roles of osteoblastic and vascular compartments. Birth Defects Research. Part C, Embryo Today, 90, 229–242.

    CAS  Google Scholar 

  37. Bautch, V. L. (2011). Stem cells and the vasculature. Nature Medicine, 17, 1437–1443.

    PubMed  CAS  Google Scholar 

  38. Kissa, K., & Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 464, 112–115.

    PubMed  CAS  Google Scholar 

  39. Bertrand, J. Y., Chi, N. C., Santoso, B., Teng, S., Stainier, D. Y. R., & Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 464, 108–111.

    PubMed  CAS  Google Scholar 

  40. Boisset, J.-C., Van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., & Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 464, 116–120.

    PubMed  CAS  Google Scholar 

  41. Kiel, M. J., Yilmaz, Ö. H., Iwashita, T., Yilmaz, O. H., Tehorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish resource hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    PubMed  CAS  Google Scholar 

  42. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., et al. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–161.

    PubMed  CAS  Google Scholar 

  43. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    PubMed  CAS  Google Scholar 

  44. Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews. Immunology, 8, 290–301.

    PubMed  CAS  Google Scholar 

  45. Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., et al. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2, 252–263.

    PubMed  CAS  Google Scholar 

  46. Chute, J. P., Saini, A. A., Chute, D. J., Wells, M. R., Clark, W. B., Harlan, D. M., et al. (2002). Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood, 100, 4433–4439.

    PubMed  CAS  Google Scholar 

  47. Li, W., Johnson, S. A., Shelley, W. C., & Yoder, M. C. (2004). Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Experimental Hematology, 32, 1226–1237.

    PubMed  CAS  Google Scholar 

  48. Butler, J. M., Nolan, D. J., Vertes, E. L., Varnum-Finney, B., Kobayashi, H., Hooper, A. T., et al. (2010). Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell, 6, 251–264.

    PubMed  CAS  Google Scholar 

  49. Duncan, A. W., Rattis, F. M., Dimascio, L. N., Congdon, K. L., Pazianos, G., Zhao, C., et al. (2005). Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunology, 6, 314–322.

    PubMed  CAS  Google Scholar 

  50. Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414.

    PubMed  CAS  Google Scholar 

  51. Varnum-Finney, B., Halasz, L. M., Sun, M., Gridley, T., Radtke, F., & Bernstein, I. D. (2011). Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. The Journal of Clinical Investigation, 121, 1207–1216.

    PubMed  CAS  Google Scholar 

  52. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.

    PubMed  CAS  Google Scholar 

  53. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.

    PubMed  CAS  Google Scholar 

  54. Kiel, M. J., Acar, M., Radice, G. L., & Morrison, S. J. (2009). Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell, 4, 170–179.

    PubMed  CAS  Google Scholar 

  55. Kobayashi, H., Butler, J. M., O'donnell, R., Kobayashi, M., Ding, B.-S., Bonner, B., et al. (2010). Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 12, 1046–1056.

    PubMed  CAS  Google Scholar 

  56. Oikawa, A., Siragusa, M., Quaini, F., Mangialardi, G., Katare, R. G., Caporali, A., et al. (2010). Diabetes mellitus induces bone marrow microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 498–508.

    PubMed  CAS  Google Scholar 

  57. Sacchetti, B., Funari, A., Michienzi, S., Cesare, S. D., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.

    PubMed  CAS  Google Scholar 

  58. Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.

    PubMed  CAS  Google Scholar 

  59. Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M., Cote, D., Means, T. K., et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.

    PubMed  CAS  Google Scholar 

  60. Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. The Journal of Clinical Investigation, 106, 1331–1339.

    PubMed  CAS  Google Scholar 

  61. Ferraro, F., Lymperi, S., Méndez-Ferrer, S., Saez, B., Spencer, J. A., Yeap, B. Y., et al. (2011). Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Science Translational Medicine, 3, 104ra101.

    PubMed  Google Scholar 

  62. Schajnovitz, A., Itkin, T., D'uva, G., Kalinkovich, A., Golan, K., Ludin, A., et al. (2011). CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 12, 391–398.

    PubMed  CAS  Google Scholar 

  63. Avecilla, S. T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., et al. (2004). Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine, 10, 64–71.

    PubMed  CAS  Google Scholar 

  64. Chow, A., Lucas, D., Hidalgo, A., Méndez-Ferrer, S., Hashimoto, D., Scheiermann, C., et al. (2011). Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. The Journal of Experimental Medicine, 208, 261–271.

    PubMed  CAS  Google Scholar 

  65. Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R., & Link, D. C. (2011). Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. The Journal of Experimental Medicine, 208, 251–260.

    PubMed  CAS  Google Scholar 

  66. Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481, 457–462.

    PubMed  CAS  Google Scholar 

  67. Doe, C. Q. (2008). Neural stem cells: balancing self-renewal with differentiation. Development, 135, 1575–1587.

    PubMed  CAS  Google Scholar 

  68. Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13, 534–550.

    Google Scholar 

  69. Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311, 1880–1885.

    PubMed  CAS  Google Scholar 

  70. Goldman, S. A., & Chen, Z. (2011). Perivascular instruction of cell genesis and fate in the adult brain. Nature Neuroscience, 14, 1382–1389.

    PubMed  CAS  Google Scholar 

  71. Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. The Journal of Comparative Neurology, 425, 479–494.

    PubMed  CAS  Google Scholar 

  72. Tavazoie, M., Veken, L. V. D., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., et al. (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3, 279–288.

    PubMed  CAS  Google Scholar 

  73. Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S. M., Goderie, S. K., et al. (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell, 3, 289–300.

    PubMed  CAS  Google Scholar 

  74. Kokovay, E., Goderie, S., Wang, Y., Lotz, S., Lin, G., Sun, Y., et al. (2010). Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell, 7, 163–173.

    PubMed  CAS  Google Scholar 

  75. Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., et al. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.

    PubMed  CAS  Google Scholar 

  76. Ramírez-Castillejo, C., Sánchez-Sánchez, F., Andreu-Agulló, C., Ferrón, S. R., Aroca-Aguilar, J. D., Sánchez, P., et al. (2006). Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nature Neuroscience, 9, 331–339.

    PubMed  Google Scholar 

  77. Andreu-Agullo, C., Morante-Redolat, J. M., Delgado, A. C., & Farinas, I. (2009). Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nature Neuroscience, 12, 1514–1523.

    PubMed  CAS  Google Scholar 

  78. Eyler Christine, E., Wu, Q., Yan, K., Macswords Jennifer, M., Chandler-Militello, D., Misuraca Katherine, L., et al. (2011). Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell, 146, 53–66.

    PubMed  Google Scholar 

  79. Dunbar, A. J., & Goddard, C. (2000). Structure–function and biological role of betacellulin. The International Journal of Biochemistry & Cell Biology, 32, 805–815.

    CAS  Google Scholar 

  80. Gómez-Gaviro, M. V., Scott, C. E., Sesay, A. K., Matheu, A., Booth, S., Galichet, C., et al. (2012). Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109, 1317–1322.

    PubMed  Google Scholar 

  81. Leventhal, C., Rafii, S., Rafii, D., Shahar, A., & Goldman, S. A. (1999). Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Molecular and Cellular Neurosciences, 13, 450–464.

    PubMed  CAS  Google Scholar 

  82. Louissaint, A., Jr., Rao, S., Leventhal, C., & Goldman, S. A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 34, 945–960.

    PubMed  CAS  Google Scholar 

  83. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    PubMed  CAS  Google Scholar 

  84. Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109, 941–961.

    PubMed  CAS  Google Scholar 

  85. Chong James, J. H., Chandrakanthan, V., Xaymardan, M., Asli Naisana, S., Li, J., Ahmed, I., et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.

    PubMed  CAS  Google Scholar 

  86. Galvez, B. G., Sampaolesi, M., Barbuti, A., Crespi, A., Covarello, D., Brunelli, S., et al. (2008). Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15, 1417–1428.

    PubMed  CAS  Google Scholar 

  87. Bearzi, C., Leri, A., Lo Monaco, F., Rota, M., Gonzalez, A., Hosoda, T., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 15885–15890.

    PubMed  CAS  Google Scholar 

  88. Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., et al. (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications, 2, 499.

    PubMed  CAS  Google Scholar 

  89. Dar, A., Domev, H., Ben-Yosef, O., Tzukerman, M., Zeevi-Levin, N., Novak, A., et al. (2012). Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb/clinical perspective. Circulation, 125, 87–99.

    PubMed  Google Scholar 

  90. Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D'antona, G., Pellegrino, M. A., et al. (2003). Cell therapy of a-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science, 301, 487–492.

    PubMed  CAS  Google Scholar 

  91. De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Gabriella, M., et al. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. The Journal of Cell Biology, 147, 869–878.

    PubMed  Google Scholar 

  92. Sampaolesi, M., Blot, S., D'antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 444, 574–579.

    PubMed  CAS  Google Scholar 

  93. Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., et al. (2002). Identification of a novel population of muscle stem cells in mice. The Journal of Cell Biology, 157, 851–864.

    PubMed  CAS  Google Scholar 

  94. Okada, M., Payne, T. R., Zheng, B., Oshima, H., Momoi, N., Tobita, K., et al. (2008). Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. Journal of the American College of Cardiology, 52, 1869–1880.

    PubMed  Google Scholar 

  95. Valina, C., Pinkernell, K., Song, Y.-H., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.

    PubMed  Google Scholar 

  96. Houtgraaf, J. H., Den Dekker, W. K., Van Dalen, B. M., Springeling, T., De Jong, R., Van Geuns, R. J., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59, 539–540.

    PubMed  Google Scholar 

  97. Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.

    PubMed  CAS  Google Scholar 

  98. Festa, E., Fretz, J., Berry, R., Schmidt, B., Rodeheffer, M., Horowitz, M., et al. (2011). Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell, 146, 761–771.

    PubMed  CAS  Google Scholar 

  99. Majka, S. M., Fox, K. E., Psilas, J. C., Helm, K. M., Childs, C. R., Acosta, A. S., et al. (2010). De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 107, 14781–14786.

    PubMed  CAS  Google Scholar 

  100. Zeve, D., Tang, W., & Graff, J. (2009). Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell, 5, 472–481.

    PubMed  CAS  Google Scholar 

  101. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R., & Arap, W. (2004). Reversal of obesity by targeted ablation of adipose tissue. Nature Medicine, 10, 625–632.

    PubMed  CAS  Google Scholar 

  102. Cao, Y. (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nature Reviews. Drug Discovery, 9, 107–115.

    PubMed  CAS  Google Scholar 

  103. Traktuev, D. O., Prater, D. N., Merfeld-Clauss, S., Sanjeevaiah, A. R., Saadatzadeh, M. R., Murphy, M., et al. (2009). Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation Research, 104, 1410–1420.

    PubMed  CAS  Google Scholar 

  104. Davidoff, M. S., Middendorff, R., Enikolopov, G., Riethmacher, D., Holstein, A. F., & Müller, D. (2004). Progenitor cells of the testosterone-producing Leydig cells revealed. The Journal of Cell Biology, 167, 935–944.

    PubMed  CAS  Google Scholar 

  105. Oatley, J. M., Oatley, M. J., Avarbock, M. R., Tobias, J. W., & Brinster, R. L. (2009). Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development, 136, 1191–1199.

    PubMed  CAS  Google Scholar 

  106. Peerani, R., & Zandstra, P. W. (2010). Enabling stem cell therapies through synthetic stem cell–niche engineering. The Journal of Clinical Investigation, 120, 60–70.

    PubMed  CAS  Google Scholar 

  107. Nakano-Doi, A., Nakagomi, T., Fujikawa, M., Nakagomi, N., Kubo, S., Lu, S., et al. (2010). Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells, 28, 1292–1302.

    PubMed  CAS  Google Scholar 

  108. Nakagomi, N., Nakagomi, T., Kubo, S., Nakano-Doi, A., Saino, O., Takata, M., et al. (2009). Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells, 27, 2185–2195.

    PubMed  Google Scholar 

  109. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    PubMed  CAS  Google Scholar 

  110. Suda, T., Takubo, K., & Semenza, G. L. (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9, 298–310.

    PubMed  CAS  Google Scholar 

  111. Vunjak-Novakovic, G., & Scadden, D. T. (2011). Biomimetic platforms for human stem cell research. Cell Stem Cell, 8, 252–261.

    PubMed  CAS  Google Scholar 

  112. Gobaa, S., Hoehnel, S., Roccio, M., Negro, A., Kobel, S., & Lutolf, M. P. (2011). Artificial niche microarrays for probing single stem cell fate in high throughput. Nature Methods, 8, 949–955.

    PubMed  CAS  Google Scholar 

  113. Calderón, L., & Boehm, T. (2012). Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell, 149, 159–172.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Victoria Gómez-Gaviro.

Additional information

Clinical statement

Full characterization of the stem cell niche is needed in order to identify the cues that direct their differentiation and self-renewal. Understanding the microenvironmental factors that regulate stem cell behavior and, in particular, those supplied by the endothelium, will allow the generation of more efficient cell therapies, moving from stem cell injection to more complex treatments based on bioartificial stem cell niches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Gaviro, M.V., Lovell-Badge, R., Fernández-Avilés, F. et al. The Vascular Stem Cell Niche. J. of Cardiovasc. Trans. Res. 5, 618–630 (2012). https://doi.org/10.1007/s12265-012-9371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9371-x

Keywords

Navigation