Arterial Stiffness: Basic Concepts and Measurement Techniques

Abstract

Arterial stiffness is highly relevant to cardiovascular disease. Arterial stiffness is central to the pathogenesis of isolated systolic hypertension and directly impacts left ventricular afterload, pressure pulsatility in the arterial tree, and its penetration into the microvasculature of target organs such as the brain and kidney. Arterial stiffness is affected by various risk factors and biologic processes. Measurements of arterial stiffness may therefore not only provide information about prevalent processes, but also valuable information regarding the cumulative history of risk factor exposure. Available studies consistently demonstrate that large artery stiffness, measured via carotid-femoral pulse wave velocity, independently predicts the risk of incident cardiovascular events in clinical and community-based cohorts. Understanding the basic principles and definitions related to arterial stiffness is therefore desirable for cardiovascular clinicians and researchers. This introductory paper reviews basic physical principles and definitions regarding arterial stiffness and the most important non-invasive methods for its quantification in vivo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Cohen, D. L., & Townsend, R. R. (2011). Update on pathophysiology and treatment of hypertension in the elderly. Current Hypertension Reports, 13, 330–337.

    PubMed  Article  Google Scholar 

  2. 2.

    Franklin, S. S. (2006). Hypertension in older people: Part 1. Journal of Clinical Hypertension (Greenwich, Conn.), 8, 444–449.

    Article  Google Scholar 

  3. 3.

    Nichols, W. W., & O'Rourke, M. F. (2005). Mcdonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London, UK: Oxford University Press.

  4. 4.

    Segers, P., & Verdonck, P. (2002). Principles of vascular physiology. In Lanzer P., Topol E. (Eds) Panvascular Medicine: Integrated Clinical Management (pp 116–137). Berlin, Germany: Springer.

  5. 5.

    Chirinos, J. A., & Segers, P. (2010). Noninvasive evaluation of left ventricular afterload: Part 1: Pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension, 56, 555–562.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Chirinos, J. A., & Segers, P. (2010). Noninvasive evaluation of left ventricular afterload: Part 2: Arterial pressure-flow and pressure–volume relations in humans. Hypertension, 56, 563–570.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    O'Rourke, M. F., & Safar, M. E. (2005). Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension, 46, 200–204.

    PubMed  Article  Google Scholar 

  8. 8.

    Vermeersch, S. J., Rietzschel, E. R., De Buyzere, M. L., De Bacquer, D., De Backer, G., Van Bortel, L. M., Gillebert, T. C., Verdonck, P. R., & Segers, P. (2008). Determining carotid artery pressure from scaled diameter waveforms: Comparison and validation of calibration techniques in 2026 subjects. Physiological Measurement, 29, 1267–1280.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Franklin, S. S. (2008). Beyond blood pressure: Arterial stiffness as a new biomarker of cardiovascular disease. Journal of the American Society of Hypertension: JASH, 2, 140–151.

    PubMed  Article  Google Scholar 

  10. 10.

    Payne, R. A., Wilkinson, I. B., & Webb, D. J. (2010). Arterial stiffness and hypertension: Emerging concepts. Hypertension, 55, 9–14.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    McEniery, C. M., Spratt, M., Munnery, M., Yarnell, J., Lowe, G. D., Rumley, A., Gallacher, J., Ben-Shlomo, Y., Cockcroft, J. R., & Wilkinson, I. B. (2010). An analysis of prospective risk factors for aortic stiffness in men: 20-year follow-up from the caerphilly prospective study. Hypertension, 56, 36–43.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. Journal of the American College of Cardiology, 55, 1318–1327.

    PubMed  Article  Google Scholar 

  13. 13.

    Boutouyrie, P., Tropeano, A. I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., & Laurent, S. (2002). Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension, 39, 10–15.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A., van Popele, N. M., Bos, M. L., Schalekamp, M. A., Asmar, R., Reneman, R. S., Hoeks, A. P., Breteler, M. M., & Witteman, J. C. (2006). Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam study. Circulation, 113, 657–663.

    PubMed  Article  Google Scholar 

  15. 15.

    O'Rourke, M. F., Staessen, J. A., Vlachopoulos, C., Duprez, D., & Plante, G. E. (2002). Clinical applications of arterial stiffness; definitions and reference values. American Journal of Hypertension, 15, 426–444.

    PubMed  Article  Google Scholar 

  16. 16.

    Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., & Struijker-Boudier, H. (2006). Expert consensus document on arterial stiffness: Methodological issues and clinical applications. European Heart Journal, 27, 2588–2605.

    PubMed  Article  Google Scholar 

  17. 17.

    Vlachopoulos, C., Dima, I., Aznaouridis, K., Vasiliadou, C., Ioakeimidis, N., Aggeli, C., Toutouza, M., & Stefanadis, C. (2005). Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation, 112, 2193–2200.

    PubMed  Article  Google Scholar 

  18. 18.

    Mitchell, G. F., Parise, H., Benjamin, E. J., Larson, M. G., Keyes, M. J., Vita, J. A., Vasan, R. S., & Levy, D. (2004). Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham heart study. Hypertension, 43, 1239–1245.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Silver, F. H., Snowhill, P. B., & Foran, D. J. (2003). Mechanical behavior of vessel wall: A comparative study of aorta, vena cava, and carotid artery. Annals of Biomedical Engineering, 31, 793–803.

    PubMed  Article  Google Scholar 

  20. 20.

    McEniery, C. M., McDonnell, B. J., Soon, A., Aitken, S., Bolton, C. E., Munnery, M., Hickson, S. S., Yasmin, Maki-Petaja, K. M., Cockcroft, J. R., Dixon, A. K., & Wilkinson, I. B. (2009). Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension, 53, 524–531.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Atkinson, J. (2008). Age-related medial elastocalcinosis in arteries: Mechanisms, animal models, and physiological consequences. Journal of Applied Physiology, 105, 1643–1651.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Silacci, P. (2002). Advanced glycation end-products as a potential target for treatment of cardiovascular disease. Journal of Hypertension, 20, 1483–1485.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Bank, A. J., Wang, H., Holte, J. E., Mullen, K., Shammas, R., & Kubo, S. H. (1996). Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation, 94, 3263–3270.

    PubMed  CAS  Google Scholar 

  24. 24.

    Zulliger, M. A., Rachev, A., & Stergiopulos, N. (2004). A constitutive formulation of arterial mechanics including vascular smooth muscle tone. American Journal of Physiology - Heart and Circulatory Physiology, 287, H1335–H1343.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Hirai, T., Sasayama, S., Kawasaki, T., & Yagi, S. (1989). Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation, 80, 78–86.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Mitchell, G. F. (2009). Clinical achievements of impedance analysis. Medical & Biological Engineering & Computing, 47, 153–163.

    Article  Google Scholar 

  27. 27.

    Mitchell, G. F. (2004). Arterial stiffness and wave reflection in hypertension: Pathophysiologic and therapeutic implications. Current Hypertension Reports, 6, 436–441.

    PubMed  Article  Google Scholar 

  28. 28.

    Mitchell, G. F. (2008). Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage. Journal of Applied Physiology, 105, 1652–1660.

    PubMed  Article  Google Scholar 

  29. 29.

    Meinders, J. M., & Hoeks, A. P. (2004). Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound in Medicine and Biology, 30, 147–154.

    PubMed  Article  Google Scholar 

  30. 30.

    Redheuil, A., Yu, W. C., Wu, C. O., Mousseaux, E., de Cesare, A., Yan, R., Kachenoura, N., Bluemke, D., & Lima, J. A. (2010). Reduced ascending aortic strain and distensibility: Earliest manifestations of vascular aging in humans. Hypertension, 55, 319–326.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Herment, A., Kachenoura, N., Lefort, M., Bensalah, M., Dogui, A., Frouin, F., Mousseaux, E., & De Cesare, A. (2010). Automated segmentation of the aorta from phase contrast mr images: Validation against expert tracing in healthy volunteers and in patients with a dilated aorta. Journal of Magnetic Resonance Imaging: JMRI, 31, 881–888.

    PubMed  Article  Google Scholar 

  32. 32.

    Giannattasio, C., Salvi, P., Valbusa, F., Kearney-Schwartz, A., Capra, A., Amigoni, M., Failla, M., Boffi, L., Madotto, F., Benetos, A., & Mancia, G. (2008). Simultaneous measurement of beat-to-beat carotid diameter and pressure changes to assess arterial mechanical properties. Hypertension, 52, 896–902.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Simon, A., & Levenson, J. (2001). Effect of hypertension on viscoelasticity of large arteries in humans. Current Hypertension Reports, 3, 74–79.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Armentano, R. L., Graf, S., Barra, J. G., Velikovsky, G., Baglivo, H., Sanchez, R., Simon, A., Pichel, R. H., & Levenson, J. (1998). Carotid wall viscosity increase is related to intima-media thickening in hypertensive patients. Hypertension, 31, 534–539.

    PubMed  CAS  Google Scholar 

  35. 35.

    Colan, S. D., Borow, K. M., & Neumann, A. (1985). Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. American Heart Journal, 109, 1306–1310.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Mahieu, D., Kips, J., Rietzschel, E. R., De Buyzere, M. L., Verbeke, F., Gillebert, T. C., De Backer, G. G., De Bacquer, D., Verdonck, P., Van Bortel, L. M., & Segers, P. (2010). Noninvasive assessment of central and peripheral arterial pressure (waveforms): Implications of calibration methods. Journal of Hypertension, 28, 300–305.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Segers, P., Rietzschel, E. R., De Buyzere, M. L., Vermeersch, S. J., De Bacquer, D., Van Bortel, L. M., De Backer, G., Gillebert, T. C., & Verdonck, P. R. (2007). Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension, 49, 1248–1255.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Holmes, W. M., Maclellan, S., Condon, B., Dufes, C., Evans, T. R., Uchegbu, I. F., & Schatzlein, A. G. (2008). High-resolution 3D isotropic MR imaging of mouse flank tumours obtained in vivo with solenoid RF micro-coil. Physics in Medicine and Biology, 53, 505–513.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Carmi, E., Liu, S., Alon, N., Fiat, A., & Fiat, D. (2006). Resolution enhancement in mri. Magnetic Resonance Imaging, 24, 133–154.

    PubMed  Article  Google Scholar 

  40. 40.

    Sweitzer, N. K., Shenoy, M., Stein, J. H., Keles, S., Palta, M., LeCaire, T., & Mitchell, G. F. (2007). Increases in central aortic impedance precede alterations in arterial stiffness measures in type 1 diabetes. Diabetes Care, 30, 2886–2891.

    PubMed  Article  Google Scholar 

  41. 41.

    Westerhof, N., Lankhaar, J. W., & Westerhof, B. E. (2009). The arterial Windkessel. Medical & Biological Engineering & Computing, 47, 131–141.

    Article  Google Scholar 

  42. 42.

    Schillaci, G., Parati, G., Pirro, M., Pucci, G., Mannarino, M. R., Sperandini, L., & Mannarino, E. (2007). Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension, 49, 986–991.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Westerhof, N., Lankhaar, J. W., & Westerhof, B. E. (2007). Ambulatory arterial stiffness index is not a stiffness parameter but a ventriculo-arterial coupling factor. Hypertension, 49, e7. author reply e8-9.

    PubMed  Article  Google Scholar 

  44. 44.

    Kikuya, M., Staessen, J. A., Ohkubo, T., Thijs, L., Metoki, H., Asayama, K., Obara, T., Inoue, R., Li, Y., Dolan, E., Hoshi, H., Hashimoto, J., Totsune, K., Satoh, H., Wang, J. G., O'Brien, E., & Imai, Y. (2007). Ambulatory arterial stiffness index and 24-hour ambulatory pulse pressure as predictors of mortality in Ohasama, Japan. Stroke, 38, 1161–1166.

    PubMed  Article  Google Scholar 

  45. 45.

    Dolan, E., Thijs, L., Li, Y., Atkins, N., McCormack, P., McClory, S., O'Brien, E., Staessen, J. A., & Stanton, A. V. (2006). Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin outcome study. Hypertension, 47, 365–370.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Hansen, T. W., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Li, Y., Dolan, E., Thijs, L., Wang, J. G., O'Brien, E., Ibsen, H., & Jeppesen, J. (2006). Ambulatory arterial stiffness index predicts stroke in a general population. Journal of Hypertension, 24, 2247–2253.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Vlachopoulos, C., Aznaouridis, K., O'Rourke, M. F., Safar, M. E., Baou, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. European Heart Journal, 31, 1865–1871.

    PubMed  Article  Google Scholar 

  48. 48.

    Duprez, D. A., Jacobs, D. R., Jr., Lutsey, P. L., Bluemke, D. A., Brumback, L. C., Polak, J. F., Peralta, C. A., Greenland, P., & Kronmal, R. A. (2011). Association of small artery elasticity with incident cardiovascular disease in older adults: The multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 174, 528–536.

    PubMed  Article  Google Scholar 

  49. 49.

    Vappou, J., Luo, J., & Konofagou, E. E. (2010). Pulse wave imaging for noninvasive and quantitative measurement of arterial stiffness in vivo. American Journal of Hypertension, 23, 393–398.

    PubMed  Article  Google Scholar 

  50. 50.

    Hermeling, E., Reesink, K. D., Kornmann, L. M., Reneman, R. S., & Hoeks, A. P. (2009). The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. Journal of Hypertension, 27, 2028–2035.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Suever, J. D., Oshinski, J., Rojas-Campos, E., Huneycutt, D., Cardarelli, F., Stillman, A. E., Raggi, P. (2012). Reproducibility of pulse wave velocity measurements with phase contrast magnetic resonance and applanation tonometry. International Journal of Cardiovascular Imaging. doi:10.1007/s10554-011-9929-8

  52. 52.

    Deffieux, T., Gennisson, J. L., Bercoff, J., & Tanter, M. (2011). On the effects of reflected waves in transient shear wave elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 2032–2035.

    PubMed  Article  Google Scholar 

  53. 53.

    Woodrum, D. A., Romano, A. J., Lerman, A., Pandya, U. H., Brosh, D., Rossman, P. J., Lerman, L. O., & Ehman, R. L. (2006). Vascular wall elasticity measurement by magnetic resonance imaging. Magnetic Resonance in Medicine, 56, 593–600.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Bernal, M., Nenadic, I., Urban, M. W., & Greenleaf, J. F. (2011). Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes. Journal of the Acoustical Society of America, 129, 1344–1354.

    PubMed  Article  Google Scholar 

  55. 55.

    Couade, M., Pernot, M., Prada, C., Messas, E., Emmerich, J., Bruneval, P., Criton, A., Fink, M., & Tanter, M. (2010). Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound in Medicine and Biology, 36, 1662–1676.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julio A. Chirinos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chirinos, J.A. Arterial Stiffness: Basic Concepts and Measurement Techniques. J. of Cardiovasc. Trans. Res. 5, 243–255 (2012). https://doi.org/10.1007/s12265-012-9359-6

Download citation

Keywords

  • Arterial stiffness
  • Compliance
  • Distensibility
  • Pulse wave velocity
  • Elastic modulus