Aguado-Sierra, J., Krishnamurthy, A., Villongco, C., Chuang, J., Howard, E., Gonzales, M. J., et al. (2011). Patient-specific modeling of dyssynchronous heart failure: A case study. Progress in Biophysics and Molecular Biology, 107, 147–155. doi:10.1016/j.pbiomolbio.2011.06.014.
PubMed
Article
Google Scholar
Aoki, M., Okamoto, Y., Musha, T., & Harumi, K. I. (1987). Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: Normal heart and bundle branch block. IEEE Transactions on Biomedical Engineering, 34(6), 454–462.
PubMed
CAS
Article
Google Scholar
Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., et al. (2004). Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation, 109, 1133–1139.
PubMed
Article
Google Scholar
Bacharova, L., Mateasik, A., Krause, R., Prinzen, F., Auricchio, A., & Potse, M. (2011). The effect of reduced intercellular coupling on electrocardiographic signs of left ventricular hypertrophy. Journal of Electrocardiology, 44, 571–576. doi:10.1016/j.jelectrocard.2011.06.004.
PubMed
Article
Google Scholar
Barr, R. C., Pilkington, T. C., Boineau, J. P., & Spach, M. S. (1966). Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Transactions on Biomedical Engineering, 13(2), 88–92.
PubMed
CAS
Article
Google Scholar
Berenfeld, O., & Jalife, J. (1998). Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circulation Research, 82, 1063–1077.
PubMed
CAS
Google Scholar
Bernus, O., van Eyck, B., Verschelde, H., & Panfilov, A. V. (2002). Transition from ventricular fibrillation to ventricular tachycardia: A simulation study on the role of Ca2 + -channel blockers in human ventricular tissue. Physics in Medicine & Biology, 47, 4167–4179.
CAS
Article
Google Scholar
Bishop, M. J., & Plank, G. (2011). Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: Application to complex ventricular models. IEEE Transactions on Biomedical Engineering, 58, 1066–1075.
PubMed
Article
Google Scholar
Bouchard, S., Jacquemet, V., & Vinet, A. (2011). Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model. Physical Review E, 83, 011,911. doi:10.1103/PhysRevE.83.011911.
Article
CAS
Google Scholar
Boyle, P. M., Deo, M., Plank, G., & Vigmond, E. J. (2010). Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks. Annals of Biomedical Engineering, 38, 456–468.
PubMed
Article
Google Scholar
Brody, D. A. (1956). A theoretical analysis of intracavitary blood mass influence on the heart–lead relationship. Circulation Research, 4, 731–738.
PubMed
CAS
Google Scholar
Brymer, J. F., Khaja, F., Marzilli, M., Goldstein, S., & Alban, J. (1985). “Ischemia at a distance” during intermittent coronary artery occlusion: A coronary anatomic explanation. Journal of the American College of Cardiology, 6(1), 41–45.
PubMed
CAS
Article
Google Scholar
Clancy, C. E., & Rudy, Y. (2002). Na + channel mutation that causes both Brugada and long-QT syndrome phenotypes; a simulation study of mechanism. Circulation, 105, 1208–1213.
PubMed
Article
Google Scholar
Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., et al. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104, 22–48 (review).
PubMed
CAS
Article
Google Scholar
Colli Franzone, P., Guerri, L., & Tentoni, S. (1990). Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field. Mathematical Biosciences, 101(2), 155–235.
Article
Google Scholar
Colli-Franzone, P., Pavarino, L. F., & Scacchi, S. (2011). Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model. Mathematical Biosciences, 230, 96–114.
PubMed
CAS
Article
Google Scholar
Comtois, P., & Vinet, A. (2002). Resetting and annihilation of reentrant activity in a model of a one-dimensional loop of ventricular tissue. Chaos, 12(3), 903–922.
PubMed
Article
Google Scholar
Comtois, P., Sakabe, M., Vigmond, E. J., Munoz, M., Texier, A., Shiroshita-Takeshita, A., et al. (2008). Mechanisms of atrial fibrillation termination by rapidly unbinding Na + channel blockers: Insights from mathematical models and experimental correlates. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1489–H1504.
PubMed
CAS
Article
Google Scholar
Conrath, C. E., & Opthof, T. (2006). Ventricular repolarization: An overview of (patho)physiology, sympathetic effects and genetic aspects. Progress in Biophysics and Molecular Biology, 92(3), 269–307.
PubMed
CAS
Article
Google Scholar
Conrath, C. E., Wilders, R., Coronel, R., de Bakker, J. M., Taggart, P., de Groot, J. R., et al. (2004). Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovascular Research, 62, 407–414.
PubMed
CAS
Article
Google Scholar
Courtemanche, M., Ramirez, R., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. American Journal of Physiology. Heart and Circulatory Physiology, 275, H301–H321.
CAS
Google Scholar
Desplantez, T., Dupont, E., Severs, N. J., & Weingart, R. (2007). Gap junction channels and cardiac impulse propagation. The Journal of Membrane Biology, 218, 13–28 (review).
PubMed
CAS
Article
Google Scholar
Dubé, B., Gulrajani, R. M., Lorange, M., LeBlanc, A. R., Nasmith, J., Nadeau, R. A. (1996). A computer heart model incorporating anisotropic propagation: IV. Simulation of regional myocardial ischemia. Journal of Electrocardiology, 29(2), 91–103.
PubMed
Article
Google Scholar
Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912.
PubMed
CAS
Google Scholar
Efimov, I. R., Gray, R. A., & Roth, B. J. (2000). Virtual electrodes and deexcitation: New insights into fibrillation induction and defibrillation. Journal of Cardiovascular Electrophysiology 11, 339–353.
PubMed
CAS
Article
Google Scholar
Eifler, W. J., Macchi, E., Ritsema van Eck, H. J., Horacek, B. M., & Rautaharju, P. M. (1981). Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms. Circulation Research, 48, 168–182.
PubMed
CAS
Google Scholar
Fast, V. G., & Kléber, A. G. (1995). Block of impulse propagation at an abrupt tissue expansion: Evaluation of the critical strand diameter in 2- and 3-dimensional computer models. Cardiovascular Research, 30, 449–459.
PubMed
CAS
Google Scholar
Franz, M. R., Bargheer, K., Rafflenbeul, W., Haverich, A., & Pichtlen, P. R. (1987). Monophasic action potential mapping in human subjects with normal electrocardiograms: Direct evidence for the genesis of the T wave. Circulation, 75, 379–386.
PubMed
CAS
Article
Google Scholar
Fung, J. W. H., Yu, C. M., Yip, G., Zhang, Y., Chan, H., Kum, C. C., et al. (2004). Variable left ventricular activation pattern in patients with heart failure and left bundle branch block. Heart, 90, 17–19.
PubMed
Article
Google Scholar
Gelernter, H. L., & Swihart, J. C. (1964). A mathematical–physical model of the genesis of the electrocardiogram. Biophysical Journal, 4, 285–301.
PubMed
CAS
Article
Google Scholar
Gelernter, H. L., Swihart, J. C., & Angell, M. A. K. (1966). The use of a mathematical model in the study of the properties of the full-surface electrocardiogram. I: Scher generators in a homogeneous torso. II: “Enlarged heart” potentials. Annals of the New York Academy of Sciences, 28, 1069–1084.
Google Scholar
Ghosh, S., Cooper, D. H., Vijayakumar, R., Zhang, J., Pollak, S., Haïssaguerre, M., et al. (2010). Early repolarization associated with sudden death: Insights from noninvasive electrocardiographic imaging. Heart Rhythm, 534–537.
Gima, K., & Rudy, Y. (2002). Ionic current basis of electrocardiographic waveforms; a model study. Circulation Research, 90, 889–896.
PubMed
CAS
Article
Google Scholar
Grandi, E., Puglisi, J. L., Bers, D. M., & Severi, S. (2006). Compound mutations in long QT syndrome assessed by a computer model. In Comp. in Cardiol., Valencia.
Gulrajani, R. M., & Mailloux, G. E. (1983). A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models. Circulation Research, 52, 45–56.
PubMed
CAS
Google Scholar
Hamlin, R. L., & Scher, A. M. (1961). Ventricular activation process and genesis of QRS complex in the goat. The American Journal of Physiology, 200, 223–228.
PubMed
CAS
Google Scholar
Han, C., Pogwizd, S. M., Killingsworth, C. R., & He, B. (2011). Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm, 8, 1266–1272. doi:10.1016/j.hrthm.2011.03.014.
PubMed
Article
Google Scholar
Henriquez, C. S., Muzikant, A. L., & Smoak, C. K. (1996). Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model. Journal of Cardiovascular Electrophysiology, 7, 424–444.
PubMed
CAS
Article
Google Scholar
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.
PubMed
CAS
Google Scholar
Hoogendijk, M. G., Potse, M., Linnenbank, A. C., Verkerk, A. O., den Ruijter, H. M., van Amersfoorth, S. C. M., et al. (2010). Mechanism of right precordial ST-segment elevation in structural heart disease: Excitation failure by current-to-load mismatch. Heart Rhythm, 7, 238–248.
PubMed
Article
Google Scholar
Hoogendijk, M. G., Potse, M., Vinet, A., de Bakker, J. M. T., & Coronel, R. (2011). ST-segment elevation by current-to-load mismatch: An experimental and computational study. Heart Rhythm, 8, 111–118. doi:10.1016/j.hrthm.2010.09.066.
PubMed
Article
Google Scholar
Hopenfeld, B., Stinstra, J. G., & MacLeod, R. S. (2004). Mechanism for ST depression associated with contiguous subendocardial ischemia. Journal of Cardiovascular Electrophysiology, 15(10), 1200–1206.
PubMed
Article
Google Scholar
Huygens, C. (1690). Treatise on light (English translation by S. P. Thompson, 1912). Chicago: University of Chicago Press.
Iyer, V., Mazhari, R., & Winslow, R. L. (2004). A computational model of the human left-ventricular epicardial myocyte. Biophysical Journal, 87, 1507–1525.
PubMed
CAS
Article
Google Scholar
Jacquemet, V., & Henriquez, C. S. (2009). Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis. Heart Rhythm, 6, 803–810.
PubMed
Article
Google Scholar
Jia, P., Ramanathan, C., Ghanem, R. N., Ryu, K., Varma, N., & Rudy, Y. (2006). Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm, 3, 296–310.
PubMed
Article
Google Scholar
Johnston, P. R., & Kilpatrick, D. (2003). The effect of conductivity values on ST segment shift in subendocardial ischaemia. IEEE Transactions on Biomedical Engineering, 50(2), 150–158.
PubMed
Article
Google Scholar
Keener, J. P. (1986). A geometrical theory for spiral waves in excitable media. SIAM Journal on Applied Mathematics, 46, 1039–1056.
Article
Google Scholar
Keener, J. P. (1991). An eikonal-curvature equation for action potential propagation in myocardium. Journal of Mathematical Biology, 29,629–651.
PubMed
CAS
Article
Google Scholar
Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299, H134–143.
PubMed
CAS
Article
Google Scholar
Keller, D. U. J., Seemann, G., Weiss, D. L., Farina, D., Zehelein, J., & Dössel, O. (2007). Computer based modeling of the congenital long-QT 2 syndrome in the visible man torso: From genes to ECG. In 29th annu. int. conf. IEEE EMBS (pp. 1410–1413). Lyon, France.
Keller, D. U. J., Jarrousse, O., Fritz, T., Ley, S., Dössel, O., Seemann, G. (2011). Impact of physiological ventricular deformation on the morphology of the T-wave: A hybrid, static-dynamic approach. IEEE Transactions on Biomedical Engineering, 58, 2109–2119.
PubMed
Article
Google Scholar
Kerckhoffs, R. C. P., Faris, O. P., Bovendeerd, P. H. M., Prinzen, F. W., Smits, K., McVeigh, E. R., et al. (2003). Timing of depolarization and contraction in the paced canine left ventricle: Model and experiment. Journal of Cardiovascular Electrophysiology, 14 Suppl., S188–S195.
PubMed
Article
Google Scholar
Kerckhoffs, R. C. P., Lumens, J., Vernooy, K., Omens, J. H., Mulligan, L. J., Delhaas, T., et al. (2008). Cardiac resynchronization: Insight from experimental and computational models. Progress in Biophysics and Molecular Biology, 97, 543–561.
PubMed
CAS
Article
Google Scholar
Kuijpers, N. H. L., ten Eikelder, H. M. M., Bovendeerd, P. H. M., Verheule, S., Arts, T., Hilbers, P. A. J. (2008). Mechanoelectric feedback as a trigger mechanism for cardiac electrical remodeling: A model study. Annals of Biomedical Engineering, 36, 1816–1835.
PubMed
Article
Google Scholar
Kuijpers, N. H. L., Hermeling, E., Bovendeerd, P. H. M., Delhaas, T., & Prinzen, F. W. (2012). Mechano-electrical coupling in dyssynchronous and failing hearts. J. Cardiovasc Trans Res, 5. doi:10.1007/s12265-012-9346-y.
Kurata, Y., Hisatome, I., Matsuda, H., & Shibamoto, T. (2005). Dynamical mechanisms of pacemaker generation in I
K1-downregulated human ventricular myocytes: Insights from bifurcation analyses of a mathematical model. Biophysical Journal, 89, 2865–2887.
PubMed
CAS
Article
Google Scholar
Lines, G. T., Buist, M. L., Grøttum, P., Pullan, A. J., Sundnes, J., & Tveito, A. (2003). Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Computing and Visualization in Science, 5, 215–239.
Article
Google Scholar
Lorange, M., & Gulrajani, R. M. (1986). Computer simulation of the Wolff–Parkinson–White preexcitation syndrome with a modified Miller–Geselowitz heart model. IEEE Transactions on Biomedical Engineering, 33(9), 862–873.
PubMed
CAS
Article
Google Scholar
Lorange, M., & Gulrajani, R.M. (1993). A computer heart model incorporating anisotropic propagation: I. Model construction and simulation of normal activation. Journal of Electrocardiology, 26(4), 245–261.
PubMed
CAS
Article
Google Scholar
Lorange, M., Gulrajani, R. M., Nadeau, R. A., & Préda, I. (1993). A computer heart model incorporating anisotropic propagation: II. Simulations of conduction block. Journal of Electrocardiology, 26(4), 263–277.
PubMed
CAS
Article
Google Scholar
MacLeod, R. S., & Brooks, D. H. (1998). Recent progress in inverse problems in electrocardiology. IEEE Engineering in Medicine and Biology Magazine, 17(1), 73–83.
PubMed
CAS
Article
Google Scholar
MacLeod, R. S., Gardner, M., Miller, R. M., & Horáček, B. M. (1995). Application of an electrocardiographic inverse solution to localize ischemia during coronary angioplasty. Journal of Cardiovascular Electrophysiology, 6(1), 2–18.
PubMed
CAS
Article
Google Scholar
Miller, W. T. III., & Geselowitz, D. B. (1978). Simulation studies of the electrocardiogram; I. The normal heart. Circulation Research, 43(2), 301–315.
PubMed
CAS
Google Scholar
Miri, R., Graf, I. M., & Dössel, O. (2009). Efficiency of timing delays and electrode positions in optimization of biventricular pacing: A simulation study. IEEE Transactions on Biomedical Engineering, 56(11), 2573–2582.
PubMed
Article
Google Scholar
Modre, R., Tilg, B., Fischer, G., & Wach, P. (2002). Noninvasive myocardial activation time imaging: A novel inverse algorithm applied to clinical ECG mapping data. IEEE Transactions on Biomedical Engineering, 49, 1153–1161.
PubMed
Article
Google Scholar
Modre, R., Seger, M., Fischer, G., Hintermüller, C., Hayn, D., Pfeifer, B., et al. (2006). Cardiac anisotropy: Is it negligible regarding noninvasive activation time imaging? IEEE Transactions on Biomedical Engineering, 53(4), 569–580.
PubMed
Article
Google Scholar
Moe, G. K., Rheinboldt, W. C., & Abildskov, J. A. (1964). A computer model of atrial fibrillation. American Heart Journal, 67, 200–220.
PubMed
CAS
Article
Google Scholar
Muzikant, A. L., & Henriquez, C. S. (1998). Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy. IEEE Transactions on Biomedical Engineering, 45(4), 449–462.
PubMed
CAS
Article
Google Scholar
Nasmith, J. B., Pharand, C., Dubé, B., Matteau, S., LeBlanc, A. R., & Nadeau, R. (2001). Localization of maximal ST segment displacement in various ischemic settings by orthogonal ECG: Implications for lead selection and the mechanism of ST shift. Canadian Journal of Cardiology, 17(1), 57–62.
PubMed
CAS
Google Scholar
Niederer, S., Mitchell, L., Smith, N., & Plank, G. (2011). Simulating a human heart beat with near-real time performance. Frontiers in Physiology, 2, 14. doi:10.3389/fphys.2011.00014.
PubMed
Article
Google Scholar
Niimi, N., Sugiyama, S., Wada, M., Sugenoya, J., Oguri, H., Toyama, J., et al. (1977). Genesis of body surface potential distribution in right bundle branch block. Journal of Electrocardiology, 10, 257–266.
PubMed
CAS
Article
Google Scholar
Noble, D., & Rudy, Y. (2001). Models of cardiac ventricular action potentials: Iterative interaction between experiment and simulation. Philosophical Transactions of the Royal Society A — Mathematical, Physical, and Engineering Sciences, 359, 1127–1142.
Article
Google Scholar
Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., et al. (1998). Mathematical model of an adult human atrial cell; the role of K + currents in repolarization. Circulation Research, 82, 63–81.
PubMed
CAS
Google Scholar
O’ Cannon R. III. (1985). Ischemia at a distance—so close yet so far. Journal of the American College of Cardiology, 6(1), 46–48.
Article
Google Scholar
Okajima, M., Fujino, T., Kobayashi, T., & Yamada, K. (1968). Computer simulation of the propagation process in excitation of the ventricles. Circulation Research, 23, 203–211.
PubMed
CAS
Google Scholar
van Oosterom, A., & Oostendorp, T. F. (2004). ECGSIM: An interactive tool for simulating QRST waveforms. Heart, 90, 165–168.
PubMed
Article
Google Scholar
van Oosterom, A., & Plonsey, R. (1991). The Brody effect revisited. Journal of Electrocardiology, 24(4), 339–348.
PubMed
Article
Google Scholar
Plonsey, R. (1979). A contemporary view of the ventricular gradient of Wilson. Journal of Electrocardiology, 12, 337–341.
PubMed
CAS
Article
Google Scholar
Potse, M., Dubé, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425–2435. doi:10.1109/TBME.2006.880875.
PubMed
Article
Google Scholar
Potse, M., Coronel, R., Falcao, S., LeBlanc, A.R., & Vinet, A. (2007). The effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. Heart Rhythm 4(2), 200–206.
PubMed
Article
Google Scholar
Potse, M., Dubé, B., Vinet, A. (2009). Cardiac anisotropy in boundary-element models for the electrocardiogram. Medical & Biological Engineering & Computing, 47, 719–729. doi:10.1007/s11517-009-0472-x.
Article
Google Scholar
Potse, M., Vinet, A., Opthof, T., Coronel, R. (2009). Validation of a simple model for the morphology of the T wave in unipolar electrograms. American Journal of Physiology. Heart and Circulatory Physiology, 297, H792–801. doi:10.1152/ajpheart.00064.2009.
PubMed
CAS
Article
Google Scholar
Puglisi, J., Bers, D. M. (2001). LabHEART: An interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology. Cell Physiology, 281, C2049–2060.
PubMed
CAS
Google Scholar
Pullan, A. J., Cheng, L. K., Nash, M. P., Bradley, C. P., & Paterson, D. J. (2001). Noninvasive electrical imaging of the heart: Theory and model development. Annals of Biomedical Engineering, 29, 817–836.
PubMed
CAS
Article
Google Scholar
Qu, F., Li, L., Nikolski, V. P., Sharma, V., & Efimov, I. R. (2005). Mechanisms of superiority of ascending ramp waveforms: New insights into mechanisms of shock-induced vulnerability and defibrillation. American Journal of Physiology. Heart and Circulatory Physiology, 289, H569–577.
PubMed
CAS
Article
Google Scholar
Reumann, M., Farina, D., Miri, R., Lurz, S., Osswald, B., & Dössel, O. (2007). Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy. Medical & Biological Engineering & Computing, 45, 845–854.
Article
Google Scholar
Reumann, M., Gurev, V., & Rice, J. J. (2009). Computational modeling of cardiac disease: Potential for personalized medicine. Personalized Medicine, 6, 45–66.
Article
Google Scholar
Rodríguez, B., Tice, B. M, Eason, J. C., Aguel, F., Ferrero, J. M. Jr, & Trayanova, N. (2004). Effect of acute global ischemia on the upper limit of vulnerability: A simulation study. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2078–H2088.
PubMed
Article
Google Scholar
Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., et al. (2010). Effects of the Purkinje system and cardiac geometry on biventricular pacing: A model study. Annals of Biomedical Engineering, 38, 1388–1398.
PubMed
Article
Google Scholar
Rosenbaum, M. B., Elizari, M. V., Levi, R. J., Nau, G. J., Pisani, N., Lázzari, J. O., et al. (1969). Five cases of intermittent left anterior hemiblock. American Journal of Cardiology, 24, 1–7.
PubMed
CAS
Article
Google Scholar
Rudy, Y., Plonsey. R., Liebman. J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44, 104–111.
PubMed
CAS
Google Scholar
Salu, Y., Marcus, M. L. (1976). Computer simulation of the precordial QRS complex: Effects of simulated changes in ventricular wall thickness and volume. American Heart Journal, 92, 758–766.
PubMed
CAS
Article
Google Scholar
Saucerman, J. J., Healy, S. N., Belik, M. E., Puglisi, J. L., McCulloch, A. D. (2004). Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation; computational models of whole cells and heterogeneous tissue. Circulation Research, 95, 1216–1224.
PubMed
CAS
Article
Google Scholar
Scacchi, S., Colli Franzone, P., Pavarino, L. F., Taccardi, B. (2009). A reliability analysis of cardiac repolarization time markers. Mathematical Biosciences, 219, 113–128.
PubMed
CAS
Article
Google Scholar
Scher, A. M., & Young, A. C. (1957) Ventricular depolarization and the genesis of QRS. Annals of the New York Academy of Sciences, 65, 768–778.
PubMed
CAS
Article
Google Scholar
Schmitt, O. H. (1969). Biological information processing using the concept of interpenetrating domains. In: K. N. Leibovic (Ed.), Information processing in the nervous system (pp. 325–331). New York: Springer.
Google Scholar
Selvester, R. H., Solomon, J. C., & Gillespie, T. L. (1968). Digital computer model of a total body electrocardiographic surface map; an adult male-torso simulation with lungs. Circulation 38, 684–690.
PubMed
CAS
Google Scholar
Solomon, J. C., & Selvester, R. H. (1973). Simulation of measured activation sequence in the human heart. American Heart Journal, 85, 518–523.
PubMed
CAS
Article
Google Scholar
Spach, M. S., Barr, R. C., Serwer, G. A., Kootsey, J. M., & Johnson, E. A. (1972). Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circulation Research, 30(5), 505–519.
PubMed
CAS
Google Scholar
Spach, M. S., Miller, W. T. III., Miller-Jones, E., Warren, R. B., & Barr, R. C. (1979). Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circulation Research, 45, 188–204.
PubMed
CAS
Google Scholar
Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2007). Mechanism of origin of conduction disturbances in aging human atrial bundles: Experimental and model study. Heart Rhythm, 4, 175–185.
PubMed
Article
Google Scholar
Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011) Defining left bundle branch block in the era of cardiac resynchronization therapy. American Journal of Cardiology, 107, 927–934.
PubMed
Article
Google Scholar
Streeter, D. D. Jr., Spotnitz, H. M., Patel, D. P., Ross, J., & Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research, 24, 339–347.
PubMed
Google Scholar
Sweeney, M. O., & Prinzen, F. W. (2006). A new paradigm for physiologic ventricular pacing. Journal of the American College of Cardiology, 47, 282–288.
PubMed
Article
Google Scholar
Szilágyi, S., Szilágyi, L., & Benyó, Z. (2011). A patient specific electro-mechanical model of the heart. Computer Methods and Programs in Biomedicine, 101, 183–200.
PubMed
Article
Google Scholar
Taccardi, B. (1963). Distribution of heart potentials on the thoracic surface of normal human subjects. Circulation Research, 12, 341–352.
PubMed
CAS
Google Scholar
Taccardi, B., Macchi, E., Lux, R. L., Ershler, P. R., Spaggiari, S., Baruffi, S., et al. (1994). Effect of myocardial fiber direction on epicardial potentials. Circulation, 90, 3076–3090.
PubMed
CAS
Google Scholar
Taggart, P., Sutton, P. M. I., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., et al. (2001). Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovascular Research, 50, 454–462.
PubMed
CAS
Article
Google Scholar
Tranquillo, J. V., Franz, M. R., Knollmann, B. C., Henriquez, A. P., Taylor, D. A., & Henriquez, C. S. (2004). Genesis of the monophasic action potential: Role of interstitial resistance and boundary gradients. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1370–1381.
PubMed
CAS
Article
Google Scholar
Trayanova, N., Plank, G., & Rodríguez, B. (2006). What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm, 3, 1232–1235.
PubMed
Article
Google Scholar
Trayanova, N. A., Constantino, J., & Gurev, V. (2011). Electromechanical models of the ventricles. American Journal of Physiology. Heart and Circulatory Physiology, 301, H279–286. doi:10.1152/ajpheart.00324.2011.
Article
CAS
Google Scholar
Trudel, M. C., Dubé, B., Potse, M., Gulrajani, R. M., Leon, L. J. (2004). Simulation of propagation in a membrane-based computer heart model with parallel processing. IEEE Transactions on Biomedical Engineering, 51(8), 1319–1329.
PubMed
Article
Google Scholar
Tung, L. (1978). A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, MIT, Cambridge, MA, USA.
ten Tusscher, K. H. W. J., & Panfilov, A. V. (2006). Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1088–H1100. doi:10.1152/ajpheart.00109.2006.
PubMed
CAS
Article
Google Scholar
ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1573–H1589.
PubMed
Article
Google Scholar
Varma, N., Jia, P., Rudy, Y. (2007). Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. Journal of Electrocardiology, 40, S174–178.
PubMed
Article
Google Scholar
Varma, N., Jia, C. P., Ramanathan, C., & Rudy, Y. (2010). RV electrical activation in heart failure during right, left, and biventricular pacing. Journal of the American College of Cardiology: Cardiovascular Imaging, 3, 567–575.
Google Scholar
Vigmond, E. J. (2005). The electrophysiological basis of MAP recordings. Cardiovascular Research, 68, 502–503 (letter).
PubMed
CAS
Article
Google Scholar
Vigmond, E. J., & Leon, L. J. (1999). Electrophysiological basis of mono-phasic action potential recordings. Medical & Biological Engineering & Computing, 37, 359–365.
CAS
Article
Google Scholar
Wehrens, X. H. T., Abriel, H., Cabo, C., Benhorin, J., & Kass, R. S. (2000). Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na + channel α-subunit; a computational analysis. Circulation, 102, 584–590.
PubMed
CAS
Google Scholar
Wikswo, J. P., Wisialowski, T. A., Altemeier, W. A., Balser, J. R., Kopelman, H. A., & Roden, D. M. (1991). Virtual cathode effects during stimulation of cardiac muscle; two-dimensional in vivo experiments. Circulation Research, 68, 513–530.
PubMed
Google Scholar
Williams, G. S. B., Smith, G. D., Sobie, E. A., & Jafri, M. S. (2010). Models of cardiac excitation–contraction coupling in ventricular myocytes. Mathematical Biosciences, 226 1–15, (review).
PubMed
CAS
Article
Google Scholar