Skip to main content
Log in

In Vivo Imaging and Computational Analysis of the Aortic Root. Application in Clinical Research and Design of Transcatheter Aortic Valve Systems

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Valvular heart disease is a major cause of morbidity and mortality in developing and industrialized countries. For patients with advanced symptomatic disease, surgical open-heart valve replacement is an effective treatment, supported by long-term outcome data. More recently, less-invasive transcatheter approaches for valve replacement/implantation have been developed for patients that are not considered surgical candidates. An understanding of valvular and paravalvular anatomy and biomechanics is pivotal for the optimization of interventional valve procedures. Advanced imaging is increasingly used not only for clinical guidance but also for the design and further improvement of transcatheter valve systems. Computed tomography is particularly attractive because it acquires high-resolution volumetric data sets of the root including the leaflets and coronary artery ostia, with sufficient temporal resolution for multi-phasic analysis. These volumetric data sets allow subsequent 3-D and 4-D display, reconstruction in unlimited planes, and mathematical modeling. Computer modeling, specifically finite element analysis, of devices intended for implantation in the aortic root, allows for structural analysis of devices and modeling of the interaction between the device and cardiovascular anatomy. This paper will provide an overview of computer modeling of the aortic root and describe FEA approaches that could be applied to TAVI and have an impact on clinical practice and device design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Aortic stenosis

AVA:

Aortic valve area

AVR:

Aortic valve replacement

CT:

Computed tomography

FEA:

Finite element analysis

MDCT:

Multi-detector computed tomography

MRI:

Magnetic resonance imaging

TAV:

Transcatheter aortic valve

TAVI:

Transcatheter aortic valve implantation

STJ:

Sinotubular junction

2-D:

Two-dimensional

3-D:

Three-dimensional

3-D Echo:

Three-dimensional echocardiography

4-D:

Four-dimensional

References

  1. Iung, B., Baron, G., Butchart, E. G., Delahaye, F., Gohlke-Bärwolf, C., Levang, O. W., et al. (2003). A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. European Heart Journal, 24, 1231–1243.

    Article  PubMed  Google Scholar 

  2. Bonow, R. O., Carabello, B. A., Kanu, C., de Leon, A. C., Jr, F. D. P., Freed, M. D., et al. (2006). ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 114, e84–e231.

    Article  PubMed  Google Scholar 

  3. Iung, B., Cachier, A., Baron, G., Messika-Zeitoun, D., Delahaye, F., Tornos, P., et al. (2005). Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? European Heart Journal, 26, 2714–2720.

    Article  PubMed  Google Scholar 

  4. Mihaljevic, T., Nowicki, E. R., Rajeswaran, J., Blackstone, E. H., Lagazzi, L., Thomas, J., et al. (2008). Survival after valve replacement for aortic stenosis: implications for decision making. The Journal of Thoracic and Cardiovascular Surgery, 135, 1270–1278.

    Article  PubMed  Google Scholar 

  5. Varadarajan, P., Kapoor, N., Bansal, R. C., & Pai, R. G. (2006). Clinical profile and natural history of 453 nonsurgically managed patients with severe aortic stenosis. The Annals of Thoracic Surgery, 82, 2111–2115.

    Article  PubMed  Google Scholar 

  6. Pai, R. G., Kapoor, N., Bansal, R. C., & Varadarajan, P. (2006). Malignant natural history of asymptomatic severe aortic stenosis: benefit of aortic valve replacement. The Annals of Thoracic Surgery, 82, 2116–2122.

    Article  PubMed  Google Scholar 

  7. Bach, D. S., Cimino, N., & Deeb, G. M. (2007). Unoperated patients with severe aortic stenosis. Journal of the American College of Cardiology, 50, 2018–2019.

    Article  PubMed  Google Scholar 

  8. Kapadia, S. R., Goel, S. S., Svensson, L., Roselli, E., Savage, R. M., Wallace, L., et al. (2009). Characterization and outcome of patients with severe symptomatic aortic stenosis referred for percutaneous aortic valve replacement. The Journal of Thoracic and Cardiovascular Surgery, 137, 1430–1435.

    Article  PubMed  Google Scholar 

  9. O'Neill, W. W. (1991). Predictors of long-term survival after percutaneous aortic valvuloplasty: report of the Mansfield Scientific Balloon Aortic Valvuloplasty Registry. Journal of the American College of Cardiology, 17, 193–198.

    Article  PubMed  Google Scholar 

  10. Berland, J., Cribier, A., Savin, T., Lefebvre, E., Koning, R., & Letac, B. (1989). Percutaneous balloon valvuloplasty in patients with severe aortic stenosis and low ejection fraction. Immediate results and 1-year follow-up. Circulation, 79, 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  11. Otto, C. M., Mickel, M. C., Kennedy, J. W., Alderman, E. L., Bashore, T. M., Block, P. C., et al. (1994). Three-year outcome after balloon aortic valvuloplasty. Insights into prognosis of valvular aortic stenosis. Circulation, 89, 642–650.

    PubMed  CAS  Google Scholar 

  12. Lieberman, E. B., Bashore, T. M., Hermiller, J. B., Wilson, J. S., Pieper, K. S., Keeler, G. P., et al. (1995). Balloon aortic valvuloplasty in adults: failure of procedure to improve long-term survival. Journal of the American College of Cardiology, 26, 1522–1528.

    Article  PubMed  CAS  Google Scholar 

  13. Andersen, H. R., Knudsen, L. L., & Hasenkam, J. M. (1992). Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. European Heart Journal, 13, 704–708.

    PubMed  CAS  Google Scholar 

  14. Cribier, A., Eltchaninoff, H., Tron, C., Bauer, F., Agatiello, C., Sebagh, L., et al. (2004). Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis. Journal of the American College of Cardiology, 43, 698–703.

    Article  PubMed  Google Scholar 

  15. Grube, E., Schuler, G., Buellesfeld, L., Gerckens, U., Linke, A., Wenaweser, P., et al. (2007). Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. Journal of the American College of Cardiology, 50, 69–76.

    Article  PubMed  Google Scholar 

  16. Lichtenstein, S. V., Cheung, A., Ye, J., Thompson, C. R., Carere, R. G., Pasupati, S., et al. (2006). Transapical transcatheter aortic valve implantation in humans: initial clinical experience. Circulation, 114, 591–596.

    Article  PubMed  Google Scholar 

  17. Webb, J. G., Pasupati, S., Humphries, K., Thompson, C., Altwegg, L., Moss, R., et al. (2007). Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation, 116, 755–763.

    Article  PubMed  Google Scholar 

  18. Petronio, A. S., De Carlo, M., Bedogni, F., Marzocchi, A., Klugmann, S., Maisano, F., et al. (2010). Safety and efficacy of the subclavian approach for transcatheter aortic valve implantation with the CoreValve revalving system. Circ Cardiovasc Interv, 3, 359–366.

    Article  PubMed  Google Scholar 

  19. Descoutures, F., Himbert, D., Lepage, L., Iung, B., Détaint, D., Tchetche, D., et al. (2008). Contemporary surgical or percutaneous management of severe aortic stenosis in the elderly. European Heart Journal, 29, 1410–1417.

    Article  PubMed  Google Scholar 

  20. Krishnaswamy, A., Tuzcu, E. M., & Kapadia, S. R. (2010). Update on transcatheter aortic valve implantation. Current Cardiology Reports, 12, 393–403.

    Article  PubMed  Google Scholar 

  21. Gurvitch R, Wood DA, Tay EL, Leipsic J, Ye J, Lichtenstein SV, Thompson CR, Carere RG, Wijesinghe N, Nietlispach F, Boone RH, Lauck S, Cheung A, Webb JG. (2010)Transcatheter aortic valve implantation. Durability of clinical and hemodynamic outcomes beyond 3 years in a large patient cohort circulation (in press)

  22. Eltchaninoff H, Prat A, Gilard M, Leguerrier A, Blanchard D, Fournial G, Iung B, Donzeau-Gouge P, Tribouilloy C, Debrux JL, Pavie A, Gueret P; on behalf of the FRANCE Registry Investigators. (2010) Transcatheter aortic valve implantation: early results of the FRANCE (FRench Aortic National CoreValve and Edwards) registry. Eur Heart J (in press)

  23. Leon, M. B., Smith, C. R., Michael Mack, D., Miller, Craig, Moses, J. W., Svensson, L. G., et al. (2010). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. NEJM, 363(13), 1012–1015.

    Google Scholar 

  24. Vahanian, A., Alfieri, O., Al-Attar, N., Antunes, M., Bax, J., Cormier, B., et al. (2008). Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 29, 1463–1470.

    Article  PubMed  Google Scholar 

  25. Lam, C. S., Xanthakis, V., Sullivan, L. M., Lieb, W., Aragam, J., Redfield, M. M., et al. (2010). Aortic root remodeling over the adult life course. Longitudinal data from the Framingham Heart Study. Circulation, 31(122), 884–890.

    Article  Google Scholar 

  26. Tops, L. F., Wood, D. A., Delgado, V., Schuijf, J. D., Mayo, J. R., Pasupati, S., et al. (2008). Noninvasive evaluation of the aortic root with multislice computed tomography: implications for transcatheter aortic valve replacement. J Am Coll Cardiol Img, 1, 321–330.

    Google Scholar 

  27. Delgado, V., & Bax, J. J. (2009). Classical methods to measure aortic valve area in the era of new invasive therapies: still accurate enough? The International Journal of Cardiovascular Imaging, 25, 183–185.

    Article  PubMed  Google Scholar 

  28. Doddamani, S., Grushko, M. J., Makaryus, A. N., Jain, V. R., Bello, R., Friedman, M. A., et al. (2008). Demonstration of left ventricular outflow tract eccentricity by 64-slice multi-detector CT. The International Journal of Cardiovascular Imaging, 25, 175–181.

    Article  PubMed  Google Scholar 

  29. Zegdi, R., Ciobotaru, V., Noghin, M., Sleilaty, G., Lafont, A., Latrémouille, C., et al. (2008). Is it reasonable to treat all calcified stenotic aortic valves with a valved stent? Results from a human anatomic study in adults. Journal of the American College of Cardiology, 51, 579–584.

    Article  PubMed  Google Scholar 

  30. Poh, K. K., Levine, R. A., Solis, J., Shen, L., Flaherty, M., Kang, Y. J., et al. (2008). Assessing aortic valve area in aortic stenosis by continuity equation: a novel approach using real-time three-dimensional echocardiography. European Heart Journal, 29, 2526–2535.

    Article  PubMed  Google Scholar 

  31. Burgstahler, C., Kunze, M., Loffler, C., Gawaz, M. P., Hombach, V., & Merkle, N. (2006). Assessment of left ventricular outflow tract geometry in non-stenotic and stenotic aortic valves by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 8, 825–829.

    Article  PubMed  Google Scholar 

  32. Hutter A, Opitz A, Bleiziffer S, Ruge H, Hettich I, Mazzitelli D, Will A, Tassani P, Bauernschmitt R, Lange R. (2010) Aortic annulus evaluation in transcatheter aortic valve implantation. Catheter Cardiovasc Interv (in press)

  33. Stolzmann, P., Knight, J., Desbiolles, L., Maier, W., Scheffel, H., Plass, A., et al. (2009). Remodelling of the aortic root in severe tricuspid aortic stenosis: implications for transcatheter aortic valve implantation. European Radiology, 19, 1316–1323.

    Article  PubMed  Google Scholar 

  34. Akhtar, M., Tuzcu, E. M., Kapadia, S. R., Svensson, L. G., Greenberg, R. K., Roselli, E. E., et al. (2009). Aortic root morphology in patients undergoing percutaneous aortic valve replacement: evidence of aortic root remodeling. The Journal of Thoracic and Cardiovascular Surgery, 137, 950–956.

    Article  PubMed  Google Scholar 

  35. Tuzcu, E. M., Kapadia, S. R., & Schoenhagen, P. (2010). Multimodality quantitative imaging of aortic root for transcatheter aortic valve implantation: more complex than it appears. Journal of the American College of Cardiology, 55, 195–197.

    Article  PubMed  Google Scholar 

  36. Messika-Zeitoun, D., Serfaty, J. M., Brochet, E., Ducrocq, G., Lepage, L., Detaint, D., et al. (2010). Multimodal assessment of the aortic annulus diameter: implications for transcatheter aortic valve implantation. Journal of the American College of Cardiology, 55, 186–194.

    Article  PubMed  Google Scholar 

  37. Schultz, C. J., Moelker, A., Piazza, N., Tzikas, A., Otten, A., Nuis, R. J., et al. (2010). Three dimensional evaluation of the aortic annulus using multislice computer tomography: are manufacturer's guidelines for sizing for percutaneous aortic valve replacement helpful? European Heart Journal, 31, 849–856.

    Article  PubMed  Google Scholar 

  38. Van Mieghem, N. M., Piazza, N., Anderson, R. H., Tzikas, A., Nieman, K., De Laat, L. E., et al. (2010). Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. Journal of the American College of Cardiology, 56, 617–626.

    Article  PubMed  Google Scholar 

  39. Choo, S. J., McRae, G., Olomon, J. P., St George, G., Davis, W., Burleson-Bowles, C. L., et al. (1999). Aortic root geometry: pattern of differences between leaflets and sinuses of Valsalva. The Journal of Heart Valve Disease, 8, 407–415.

    PubMed  CAS  Google Scholar 

  40. Rankin, J. S., Dalley, A. F., Crooke, P. S., & Anderson, R. H. (2008). A 'hemispherical' model of aortic valvar geometry. The Journal of Heart Valve Disease, 17, 179–186.

    PubMed  Google Scholar 

  41. Okura, H., Yoshida, K., Hozumi, T., Akasaka, T., & Yoshikawa, J. (1997). Planimetry and transthoracic two-dimensional echocardiography in noninvasive assessment of aortic valve area in patients with valvular aortic stenosis. Journal of the American College of Cardiology, 30, 753–759.

    Article  PubMed  CAS  Google Scholar 

  42. John, A. S., Dill, T., Brandt, R. R., Rau, M., Ricken, W., Bachmann, G., et al. (2003). Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standard. Journal of the American College of Cardiology, 42, 519–526.

    Article  PubMed  Google Scholar 

  43. Willmann, J. K., Weishaupt, D., Lachat, M., Kobza, R., Roos, J. E., Seifert, B., et al. (2002). Electrocardiographically gated multi-detector CT for assessment of valvular morphology and calcifications in aortic stenosis. Radiology, 225, 120–128.

    Article  PubMed  Google Scholar 

  44. Morgan-Hughes, G. J., Owens, P. E., Roobottom, C. A., & Marshall, A. J. (2003). Three dimensional volume quantification of aortic valve calcification using multislice computed tomography. Heart, 89, 1191–1194.

    Article  PubMed  CAS  Google Scholar 

  45. Morgan-Hughes, G. J., & Roobottom, C. A. (2004). Aortic valve calcification on computed tomography predicts the severity of aortic stenosis. Clinical Radiology, 59, 208.

    Article  PubMed  CAS  Google Scholar 

  46. Willmann, J. K., Weishaupt, D., Lachat, M., Kobza, R., Roos, J. E., Seifert, B., et al. (2002). Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis. Radiology, 225, 120–128.

    Article  PubMed  Google Scholar 

  47. Cueff C, Serfaty JM, Cimadevilla C, Laissy JP, Himbert D, Tubach F, Duval X, Iung B, Enriquez-Sarano M, Vahanian A, Messika-Zeitoun D. (2010) Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction. Heart (in press)

  48. Feuchtner, G. M., Dichtl, W., Friedrich, G. J., Frick, M., Alber, H., Schachner, T., et al. (2006). Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity. Journal of the American College of Cardiology, 47, 1410–1417.

    Article  PubMed  Google Scholar 

  49. Maselli, D., De Paulis, R., Scaffa, R., Weltert, L., Bellisario, A., Salica, A., et al. (2007). Sinotubular junction size affects aortic root geometry and aortic valve function in the aortic valve reimplantation procedure: an in vitro study using the Valsalva graft. The Annals of Thoracic Surgery, 84, 1214–1218.

    Article  PubMed  Google Scholar 

  50. Lansac, E., Lim, H. S., Shomura, Y., Lim, K. H., Rice, N. T., Goetz, W. A., et al. (2005). Aortic root dynamics are asymmetric. The Journal of Heart Valve Disease, 14, 400–407.

    PubMed  Google Scholar 

  51. Lansac, E., Lim, H. S., Shomura, Y., Lim, K. H., Rice, N. T., Goetz, W., et al. (2002). A four-dimensional study of the aortic root dynamics. European Journal of Cardiothoracic Surgery, 22, 497–503.

    Article  PubMed  CAS  Google Scholar 

  52. Herzog, C., Abolmaali, N., Balzer, J. O., Baunach, S., Ackermann, H., Dogan, S., et al. (2002). Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. European Radiology, 12, 2670–2678.

    PubMed  Google Scholar 

  53. Achenbach, S., Anders, K., & Kalender, W. (2008). Dual source cardiac computed tomography: image quality and dose considerations. European Radiology, 18(6), 1188–1198.

    Article  PubMed  Google Scholar 

  54. Kazui, T., Izumoto, H., Yoshioka, K., & Kawazoe, K. (2006). Dynamic morphologic changes in the normal aortic annulus during systole and diastole. The Journal of Heart Valve Disease, 15, 617–621.

    PubMed  Google Scholar 

  55. Kazui, T., Kin, H., Tsuboi, J., Yoshioka, K., Okabayashi, H., & Kawazoe, K. (2008). Perioperative dynamic morphological changes of the aortic annulus during aortic root remodeling with aortic annuloplasty at systolic and diastolic phases. The Journal of Heart Valve Disease, 17, 366–370.

    PubMed  Google Scholar 

  56. Kapadia, S. R., Schoenhagen, P., Stewart, W., & Tuzcu, E. M. (2010). Imaging for transcatheter valve procedures. Current Problems in Cardiology, 35, 228–276.

    Article  PubMed  Google Scholar 

  57. Laissy, J. P., Messika-Zeitoun, D., Serfaty, J. M., Sebban, V., Schouman-Claeys, E., Iung, B., et al. (2007). Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart, 93, 1121–1125.

    Article  PubMed  Google Scholar 

  58. Schoenhagen P, Numburi U, Halliburton SS, Aulbach P, von Roden M, Desai MY, Rodriguez LL, Kapadia SR, Tuzcu EM, Lytle BW. (2010) Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. Eur Heart J (in press)

  59. Schoenhagen, P., Tuzcu, E. M., Kapadia, S. R., Desai, M. Y., & Svensson, L. G. (2009). Three-dimensional imaging of the aortic valve and aortic root with computed tomography: new standards in an era of transcatheter valve repair/implantation. European Heart Journal, 30, 2079–2086.

    Article  PubMed  Google Scholar 

  60. Markl, M., Kilner, P. J., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13, 7.

    Article  PubMed  Google Scholar 

  61. Beck, A., Thubrikar, M. J., & Robicsek, F. (2001). Stress analysis of the aortic valve with and without the sinuses of Valsalva. The Journal of Heart Valve Disease, 10, 1–11.

    PubMed  CAS  Google Scholar 

  62. Gnyaneshwar, R., Kumar, R. K., & Balakrishnan, K. R. (2002). Dynamic analysis of the aortic valve using a finite element model. The Annals of Thoracic Surgery, 73, 1122–1129.

    Article  PubMed  Google Scholar 

  63. Weinberg, E. J., & Kaazempur-Mofrad, M. R. (2007). Transient, three-dimensional, multi-scale simulations of the human aortic valve. Cardiovascular Engineering, 7, 140–155.

    Article  PubMed  Google Scholar 

  64. Grande-Allen, K. J., Cochran, R. P., Reinhall, P. G., & Kunzelman, K. S. (2000). Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. The Annals of Thoracic Surgery, 69, 1851–1857.

    Article  Google Scholar 

  65. Grande, K. J., Cocharan, R. P., Reinhall, P. G., & Kunzelman, K. S. (1998). Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Annals of Biomedical Engineering, 26, 534–545.

    Article  PubMed  CAS  Google Scholar 

  66. Cacciola, G., Peters, G. W. M., & Schreurs, P. J. G. (2000). A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. Journal of Biomechanics, 33, 521–530.

    Article  PubMed  CAS  Google Scholar 

  67. Patterson, E. A., Howard, I. C., & Thornton, M. A. (1996). A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic valve during the cardiac cycle. J Med Eng Tech, 20, 95–108.

    Article  CAS  Google Scholar 

  68. Huang, X., Black, M. M., Howard, I. C., & Patterson, E. A. (1990). A two-dimensional finite element analysis of a bioprosthetic heart valve. Journal of Biomechanics, 23, 753–762.

    Article  PubMed  CAS  Google Scholar 

  69. Grande-Allen, K. J., Cochran, R. P., Reinhall, P. G., & Kunzelman, K. S. (2000). Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. The Journal of Thoracic and Cardiovascular Surgery, 122, 946–954.

    Article  Google Scholar 

  70. Weinberg, E. J., & Kaazempur-Mofrad, M. R. (2008). A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. Journal of Biomechanics, 41, 3482–3487.

    Article  PubMed  Google Scholar 

  71. Soncini, M., Votta, E., Zinicchino, S., Burrone, V., Mangini, A., Lemma, M., et al. (2009). Aortic root performance after valve sparing procedure: a comparative finite element analysis. Medical Engineering & Physics, 31, 234–243.

    Article  Google Scholar 

  72. Grande-Allen, K. J., Cochran, R. P., Reinhall, P. G., & Kunzelman, K. S. (2000). Re-creation of sinuses is important for sparing the aortic valve: a finite element study. The Journal of Thoracic and Cardiovascular Surgery, 119, 753–763.

    Article  PubMed  CAS  Google Scholar 

  73. Cataloglu, A., Clark, R. E., & Gould, P. L. (1977). Stress analysis of aortic valve leaflets with smoothed geometrical data. Journal of Biomechanics, 10, 153–158.

    Article  PubMed  CAS  Google Scholar 

  74. Pang, D. C., Choo, S. J., Luo, H. H., Shomura, Y. U., Daniel, S., Nikolic, S., et al. (2000). Significant increase of aortic root volume and commissural area occurs prior to aortic valve opening. The Journal of Heart Valve Disease, 9, 9–15.

    PubMed  CAS  Google Scholar 

  75. Sabbah, H. N., Hamid, M. S., & Stein, P. D. (1986). Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. The Annals of Thoracic Surgery, 42, 93–96.

    Article  PubMed  CAS  Google Scholar 

  76. Christie, G. W. (1992). Computer modeling of bioprosthetic heart valves. European Journal of Cardiothoracic Surgery, 1, S95–S100.

    Article  Google Scholar 

  77. Hamid, M. S., Sabbah, H. N., & Stein, P. D. (1986). Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. Journal of Biomechanics, 19, 759–769.

    Article  PubMed  CAS  Google Scholar 

  78. Berdajs, D., Lajos, P., & Turina, M. (2002). The anatomy of the aortic root. Cardiovascular Surgery, 10, 320–327.

    Article  PubMed  Google Scholar 

  79. Swanson, W. M., & Clark, R. E. (1974). Dimensions and geometric relationships of the human aortic value as a function of pressure. Circulation Research, 35, 871–882.

    PubMed  CAS  Google Scholar 

  80. Labrosse, M. R., Beller, C. J., Robicsek, F., & Thubrikar, M. J. (2006). Geometric modeling of functional trileaflet aortic valves: development and clinical applications. Journal of Biomechanics, 39, 2665–2672.

    Article  PubMed  Google Scholar 

  81. Grande-Allen, K. J., Cochran, R. P., Reinhall, P. G., & Kunzelman, K. S. (1998). Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Annals of Biomedical Engineering, 26, 534–545.

    Article  Google Scholar 

  82. Thubrikar, M. J., Nolan, S. P., Aouad, J., & Deck, J. D. (1986). Stress sharing between the sinus and leaflets of canine aortic valve. The Annals of Thoracic Surgery, 42, 434–440.

    Article  PubMed  CAS  Google Scholar 

  83. Thornton, M. A., Howard, I. C., & Patterson, E. A. (1997). Three-dimensional stress analysis of polypropylene leaflets for prosthetic heart valves. Medical Engineering & Physics, 19, 388–397.

    Article  Google Scholar 

  84. Vesely, I. (2000). Aortic root dilation prior to valve opening explained by passive hemodynamics. The Journal of Heart Valve Disease, 9, 16–20.

    PubMed  CAS  Google Scholar 

  85. Peskin, C. S., & McQueen, D. M. (1989). A three-dimensional computational model for blood flow in the heart: I. Immersed elastic fibers in a viscous incompressible fluid. Journal of Comparative Physiology, 81, 372–405.

    Google Scholar 

  86. Makhijani, V., Yang, H., Dionne, P., & Thubrikar, M. (1997). Three-dimensional coupled fluid-structural simulation of pericardial bioprosthetic valve function. Am Soc Artif Intern Organs J, 43, M387–M392.

    CAS  Google Scholar 

  87. De Hart, J., Peters, G. W., Schreurs, P. J., & Baaijens, F. P. (2000). A two-dimensional fluid–structure interaction model of the aortic valve [correction of value]. Journal of Biomechanics, 33, 1079–1088.

    Article  PubMed  Google Scholar 

  88. Verhey, J. F., Nathan, N. S., Rienhoff, O., Kikinis, R., Rakebrandt, F., & D'Ambra, M. N. (2006). Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomedical Engineering Online, 3, 5–17.

    Google Scholar 

  89. Conti, C. A., Votta, E., Della Corte, A., Del Viscovo, L., Bancone, C., Cotrufo, M., et al. (2010). Dynamic finite element analysis of the aortic root from MRI-derived parameters. Medical Engineering & Physics, 32, 212–221.

    Article  Google Scholar 

  90. Nicosia, M. A., Cochran, R. P., Einstein, D. R., Rutland, C. J., & Kunzelman, K. S. (2003). A coupled fluid–structure finite element model of the aortic valve and root. The Journal of Heart Valve Disease, 12, 781–789.

    PubMed  Google Scholar 

  91. Grbi, S., Ionasec, R., Vitanovski, D., Voigt, I., Wang, Y., Georgescu, B., et al. (2010). Complete valvular heart apparatus model from 4D cardiac CT. Med Image Comput Comput Assist Interv, 13, 218–226.

    Google Scholar 

  92. Kaplan, A. V., Baim, D. S., Smith, J. J., Feigal, D. A., Simons, M., Jefferys, D., et al. (2004). Medical device development: from prototype to regulatory approval. Circulation, 109, 3068–3072.

    Article  PubMed  Google Scholar 

  93. Baim, D. S., Donovan, A., Smith, J. J., Briefs, N., Geoffrion, R., Feigal, D., et al. (2007). Medical device development: managing conflicts of interest encountered by physicians. Catheterization and Cardiovascular Interventions, 69, 655–664.

    Article  PubMed  Google Scholar 

  94. Vassiliades, T. A., Jr., Block, P. C., Cohn, L. H., Adams, D. H., Borer, J. S., Feldman, T., et al. (2005). The clinical development of percutaneous heart valve technology: a position statement of the Society of Thoracic Surgeons (STS), the American Association for Thoracic Surgery (AATS), and the Society for Cardiovascular Angiography and Interventions (SCAI) endorsed by the American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA). Journal of the American College of Cardiology, 45, 1554–1560.

    Article  PubMed  Google Scholar 

  95. Schievano, S., Taylor, A. M., Capelli, C., Coats, L., Walker, F., Lurz, P., et al. (2010). First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. EuroIntervention, 5, 745–750.

    Article  PubMed  Google Scholar 

  96. Capelli, C., Taylor, A. M., Migliavacca, F., Bonhoeffer, P., & Schievano, S. (2010). Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos Transact A Math Phys Eng Sci, 368, 3027–3038.

    PubMed  Google Scholar 

  97. Leon, M. B., Piazza, N., Nikolsky, E., Blackstone, E. H., Cutlip, D. E., Kappetein, A. P., et al. (2011). Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. European Heart Journal, 32, 205–217.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mike Schendel (Medtronic, Inc.) for his assistance on this manuscript.

Financial Disclosure

Paul Schoenhagen, Zoran Popovic, and Sandra S. Halliburton have no disclosures. Alexander Hill and Tim Kelley are employees of Medtronic, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schoenhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenhagen, P., Hill, A., Kelley, T. et al. In Vivo Imaging and Computational Analysis of the Aortic Root. Application in Clinical Research and Design of Transcatheter Aortic Valve Systems. J. of Cardiovasc. Trans. Res. 4, 459–469 (2011). https://doi.org/10.1007/s12265-011-9277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9277-z

Keywords

Navigation