Skip to main content

Advertisement

Log in

Techniques for Phenotyping Coronary Artery Disease in the Cardiac Catheterization Laboratory for Applications in Translational Research

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The catheterization laboratory is an excellent resource for translational research projects requiring phenotypic analysis of coronary artery disease. Coronary angiography, a traditional method of quantifying coronary disease, remains useful for describing the extent and the severity of angiographic coronary disease but is limited by the fact that angiography only depicts the effect of atherosclerosis on the arterial lumen. For this reason, quantitative coronary angiography has been supplemented by intravascular ultrasound and other catheter-based techniques and non-invasive methods for studies involving atherosclerosis progression and regression. Other angiographic based techniques potentially useful in research include the semi-quantification of collateral circulation, thrombolysis in myocardial infarction (TIMI) frame count, and TIMI blush score. The invasive assessment of coronary flow reserve and fractional flow reserve is a valuable adjunctive technique and can be used to precisely quantify the extent of ischemia or the presence of microvascular disease. Intravascular ultrasound (IVUS) is currently considered the gold standard for early diagnosis of coronary atherosclerosis and for measuring plaque burden. The serial measurements of changes in plaque volume over time are a valuable method of discerning plaque progression and regression. Similarly, radiofrequency backscatter IVUS, a relatively new imaging modality, can be used to describe and track changes in plaque composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donnelly, P., Maurovich-Horvat, P., Vorpahl, M., et al. (2010). Multimodality imaging atlas of coronary atherosclerosis. JACC Cardiovasc Imaging, 3(8), 876–880.

    Article  PubMed  Google Scholar 

  2. Maehara, A., Mintz, G. S., & Weissman, N. J. (2009). Advances in intravascular imaging. Circ Cardiovasc Intervent, 2, 482–490.

    Article  Google Scholar 

  3. Eshtehardi P, Luke J, McDaniel MC, Samady H (2011) Intravascular imaging tools in the cardiac catheterization laboratory: comprehensive assessment of both anatomy and physiology. J Cardiovasc Transl Res, in press.

  4. Gould, K. L., Libscomb, K., & Hamilton, G. W. (1974). Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. The American Journal of Cardiology, 33, 87–94.

    Article  PubMed  CAS  Google Scholar 

  5. Harris, P. J., Behar, V. S., Conley, M. J., Harrell, F. E., Lee, K. L., Peter, R. H., et al. (1980). The prognostic significance of 50% coronary stenosis in medically treated patients with coronary artery disease. Circulation, 62, 240–248.

    PubMed  CAS  Google Scholar 

  6. Califf, R. M., Phillips, H. R., Hindman, M. C., Mark, D. B., Lee, K. L., Behar, V. S., et al. (1985). Prognostic value of a coronary artery jeopardy score. Journal of the American College of Cardiology, 5, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  7. de Feyter, P. J., Serruys, P. W., Davies, M. J., Richardson, P., Lubsen, J., & Oliver, M. F. (1991). Quantitative coronary angiography to measure progression and regression of coronary atherosclerosis. Value, limitations, and implications for clinical trials. Circulation, 84, 412–423.

    PubMed  Google Scholar 

  8. Lansky, A. J., Desai, K., & Leon, M. B. (2002). Quantitative coronary angiography in regression trials: a review of methodologic considerations, endpoint selection and limitations. The American Journal of Cardiology, 89(suppl), 4B–9B.

    Article  PubMed  Google Scholar 

  9. Taylor, A., Shaw, L. J., Fayad, Z., O’Leary, D., Brown, B. G., Nissen, S., et al. (2005). Tracking atherosclerosis regression: a clinical tool in preventative cardiology. Atherosclerosis, 180, 1–10.

    Article  PubMed  CAS  Google Scholar 

  10. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R., & Kolettis, G. J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. The New England Journal of Medicine, 316, 1371–1375.

    Article  PubMed  CAS  Google Scholar 

  11. Stiel, G. M., Stiel, L. S. G., Schofer, J., Donath, K., & Mathey, D. G. (1989). Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessment of coronary heart disease. Circulation, 80, 1603–1609.

    Article  PubMed  CAS  Google Scholar 

  12. Losordo, D. W., Rosenfield, K., Kaufman, J., Pieczek, A., & Isner, J. M. (1994). Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. Circulation, 89, 2570–2577.

    PubMed  CAS  Google Scholar 

  13. Cohen, M., & Rentrop, K. P. (1986). Limitation of myocardial ischemia by collateral circulation during sudden controlled coronary artery occlusion in human subjects: a prospective study. Circulation, 74, 469–476.

    Article  PubMed  CAS  Google Scholar 

  14. Sabia, P. J., Powers, E. R., Ragosta, M., Sarembock, I. J., Burwell, L. R., & Kaul, S. (1992). Association between collateral residual blood flow and myocardial viability in patients with recent myocardial infarction. New Engl J Med, 327, 1825–1831.

    Article  PubMed  CAS  Google Scholar 

  15. Vernon, S. M., Camarano, G., Kaul, S., Sarembock, I. J., Gimple, L. W., Powers, E. R., et al. (1996). Myocardial contrast echocardiography demonstrates that collateral flow can preserve myocardial function beyond a chronically occluded coronary artery. The American Journal of Cardiology, 78, 958–960.

    Article  PubMed  CAS  Google Scholar 

  16. Gibson, C. M., Cannon, C. P., Daley, W. L., Dodge, T., Alexander, B., Marble, S. J., et al. (1996). TIMI frame counts. A quantitative method of assessing coronary artery flow. Circulation, 93, 879–888.

    PubMed  CAS  Google Scholar 

  17. Gibson, C. M., & Schömig, A. (2004). Coronary and myocardial angiography: angiographic assessment of both epicardial and myocardial perfusion. Circulation, 109, 3096–3105.

    Article  PubMed  Google Scholar 

  18. Tonino, P. A. L., Fearon, W. F., DeBruyne, B., Oldroyd, K. G., Leesar, M. A., Ver Lee, P. N., et al. (2010). Angiographic versus functional severity of coronary artery stenoses in the FAME study. Journal of the American College of Cardiology, 55, 2816–2821.

    Article  PubMed  Google Scholar 

  19. Pijls, N. H., De Bruyne, B., Peels, K., Van Der Voort, P. H., Bonnier, H. J., Bartunek, J., et al. (1996). Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. The New England Journal of Medicine, 334, 1703–1708.

    Article  PubMed  CAS  Google Scholar 

  20. Bishop, A. H., & Samady, H. (2004). Fractional flow reserve: critical review of an important physiology adjunct to angiography. American Heart Journal, 147, 792–802.

    Article  PubMed  Google Scholar 

  21. Kern, M. J., Lerman, A., Bech, J. W., DeBruyne, B., Eeckhout, E., Fearon, W. F., et al. (2006). Physiologic assessment of coronary artery disease in the cardiac catheterization laboratory. Circulation, 114, 1321–1341.

    Article  PubMed  Google Scholar 

  22. Kern, M. J., & Samady, H. (2010). Current concepts of integrated coronary physiology in the catheterization laboratory. Journal of the American College of Cardiology, 55, 173–185.

    Article  PubMed  Google Scholar 

  23. Ragosta, M., Samady, H., Isaacs, R. B., Gimple, L. W., Sarembock, I. J., & Powers, E. R. (2004). Coronary flow reserve in diabetic patients with end-stage renal disease and normal epicardial coronary arteries. American Heart Journal, 147, 1017–1023.

    Article  PubMed  Google Scholar 

  24. Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., Brown, E. G., Ganz, P., Vogel, R. A., et al. (2004). Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis. A randomized controlled trial. JAMA, 291, 1071–1080.

    Article  PubMed  CAS  Google Scholar 

  25. Nissen, S. E., Tardif, J. C., Nicholls, S. M., Revkin, J. H., Shear, C. L., Duggan, W. T., et al. (2007). Effect of torcetrapib on the progression of coronary atherosclerosis. N Eng J Med, 356, 1304–1316.

    Article  CAS  Google Scholar 

  26. Nicholls, S. J., Hsu, A., Wolski, K., Hu, B., Bayturan, O., Lavoie, A., et al. (2010). Intravascular ultrasound derived measures of coronary atherosclerotic plaque burden and clinical outcome. Journal of the American College of Cardiology, 55, 2399–2407.

    Article  PubMed  Google Scholar 

  27. Nasu, K., Tsuchikane, E., Katoh, O., Fujita, H., Surmely, J. F., Ehara, M., et al. (2008). Plaque characterization by virtual histology intravascular ultrasound analysis in patients with type 2 diabetes. Heart, 94, 429–433.

    Article  PubMed  CAS  Google Scholar 

  28. Serruys, P. W., García-García, H. M., Buszman, P., Erne, P., Verheye, S., Aschermann, M., et al. (2008). Integrated biomarker and imaging study-2 investigators. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation, 118, 1172–1182.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ragosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragosta, M. Techniques for Phenotyping Coronary Artery Disease in the Cardiac Catheterization Laboratory for Applications in Translational Research. J. of Cardiovasc. Trans. Res. 4, 385–392 (2011). https://doi.org/10.1007/s12265-011-9274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9274-2

Keywords

Navigation