Skip to main content

Adipose-derived Stem Cells for Myocardial Infarction

Abstract

In recent years, stem cell treatment of myocardial infarction has elicited great enthusiasm upon scientists and physicians alike, thus making the finding of a suitable cell a compulsory subject for modern medicine. Due to its potential, accessibility and efficiency of harvesting, adipose tissue has become one of the most attractive sources of stem cells for regenerative therapies. The differentiation capacity and the paracrine activity of these cells has made them an optimal candidate for the treatment of a diverse range of diseases from immunological disorders as graft versus host disease to cardiovascular pathologies like peripheral ischemia. In this review, we will focus on the use of stem cells derived from adipose tissue for treatment of myocardial infarction, with special attention to their putative in vivo mechanisms of action.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Mazo, M., Pelacho, B., & Prosper, F. (2010). Stem cell therapy for chronic myocardial infarction. Journal of Cardiovascular Translational Research, 3(2), 79–88. doi:10.1007/s12265-009-9159-9.

    Google Scholar 

  2. 2.

    Pelacho, B., & Prosper, F. (2008). Stem cells and cardiac disease: where are we going? Current Stem Cell Research & Therapy, 3(4), 265–276.

    Article  CAS  Google Scholar 

  3. 3.

    Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Fraser, J. K., Wulur, I., Alfonso, Z., & Hedrick, M. H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24(4), 150–154.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Trayhurn, P. (2005). Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiologica Scandinavica, 184(4), 285–293. doi:10.1111/j.1365-201X.2005.01468.x.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Daher, S. R., Johnstone, B. H., Phinney, D. G., & March, K. L. (2008). Adipose stromal/stem cells: basic and translational advances: the IFATS collection. Stem Cells, 26(10), 2664–2665. doi:10.1634/stemcells.2008-0927.

    PubMed  Article  Google Scholar 

  7. 7.

    Poglio, S., De Toni-Costes, F., Arnaud, E., Laharrague, P., Espinosa, E., Casteilla, L., et al. (2010). Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells, 28(11), 2065–2072. doi:10.1002/stem.523.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Cannon, B., & Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1), 277–359. doi:10.1152/physrev.00015.2003.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Nedergaard, J., Bengtsson, T., & Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism, 293(2), E444–E452. doi:10.1152/ajpendo.00691.2006.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ailhaud, G., & Hauner, H. (1998). Development of white adipose tissue. In G. A. Bray, C. Bouchard, & W. P. T. James (Eds.), Handbook of obesity. New York: Marcel Dekker Inc.

    Google Scholar 

  11. 11.

    Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454(7207), 961–967. doi:10.1038/nature07182.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Guerra, C., Koza, R. A., Yamashita, H., Walsh, K., & Kozak, L. P. (1998). Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation, 102(2), 412–420. doi:10.1172/JCI3155.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24(2), 376–385.

    PubMed  Article  Google Scholar 

  14. 14.

    Cousin, B., Andre, M., Arnaud, E., Penicaud, L., & Casteilla, L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and Biophysical Research Communications, 301(4), 1016–1022.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Corre, J., Barreau, C., Cousin, B., Chavoin, J. P., Caton, D., Fournial, G., et al. (2006). Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. Journal of Cellular Physiology, 208(2), 282–288.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110(3), 349–355.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109(5), 656–663.

    PubMed  Article  Google Scholar 

  18. 18.

    Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94(2), 223–229.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Leobon, B., Roncalli, J., Joffre, C., Mazo, M., Boisson, M., Barreau, C., et al. (2009). Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83(4), 757–767.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100(9), 1249–1260. doi:10.1161/01.RES.0000265074.83288.09.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kim, Y. M., Jeon, E. S., Kim, M. R., Jho, S. K., Ryu, S. W., & Kim, J. H. (2008). Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. International Journal of Biochemistry & Cell Biology, 40(11), 2482–2491.

    Article  CAS  Google Scholar 

  22. 22.

    Rodriguez, L. V., Alfonso, Z., Zhang, R., Leung, J., Wu, B., & Ignarro, L. J. (2006). Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12167–12172.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Fischer, L. J., McIlhenny, S., Tulenko, T., Golesorkhi, N., Zhang, P., Larson, R., et al. (2009). Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. Journal of Surgical Research, 152(1), 157–166.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Martinez-Estrada, O. M., Munoz-Santos, Y., Julve, J., Reina, M., & Vilaro, S. (2005). Human adipose tissue as a source of Flk-1+ cells: new method of differentiation and expansion. Cardiovascular Research, 65(2), 328–333. doi:10.1016/j.cardiores.2004.11.015.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    van Dijk, A., Niessen, H. W., Zandieh Doulabi, B., Visser, F. C., & van Milligen, F. J. (2008). Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell & Tissue Research, 334, 457–467.

    Article  Google Scholar 

  26. 26.

    Gaustad, K. G., Boquest, A. C., Anderson, B. E., Gerdes, A. M., & Collas, P. (2004). Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochemical and Biophysical Research Communications, 314(2), 420–427.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Bai, X., Pinkernell, K., Song, Y. H., Nabzdyk, C., Reiser, J., & Alt, E. (2007). Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 353(3), 665–671.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Song, Y. H., Gehmert, S., Sadat, S., Pinkernell, K., Bai, X., Matthias, N., et al. (2007). VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 354(4), 999–1003.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102(1), 77–85.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Madonna, R., Renna, F. V., Cellini, C., Cotellese, R., Picardi, N., Francomano, F., et al. (2010). Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. European Journal of Clinical Investigation. doi:10.1111/j.1365-2362.2010.02384.x.

    Google Scholar 

  31. 31.

    Zhang, P., Moudgill, N., Hager, E., Tarola, N., Dimatteo, C., McIlhenny, S., et al. (2010). Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells and Development. doi:10.1089/scd.2010.0152.

    Google Scholar 

  32. 32.

    Haider, H. K., & Ashraf, M. (2008). Strategies to promote donor cell survival: Combining preconditioning approach with stem cell transplantation. Journal of Molecular and Cellular Cardiology, 45, 554–666.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Penn, M. S., & Mangi, A. A. (2008). Genetic enhancement of stem cell engraftment, survival, and efficacy. Circulation Research, 102(12), 1471–1482.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Suuronen, E. J., Kuraitis, D., & Ruel, M. (2008). Improving cell engraftment with tissue engineering. Seminars in Thoracic and Cardiovascular Surgery, 20(2), 110–114.

    PubMed  Article  Google Scholar 

  35. 35.

    Robey, T. E., Saiget, M. K., Reinecke, H., & Murry, C. E. (2008). Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology, 45, 567–581.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Fedak, P. W. (2008). Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Seminars in Thoracic and Cardiovascular Surgery, 20(2), 87–93.

    PubMed  Article  Google Scholar 

  37. 37.

    Sengenes, C., Miranville, A., Maumus, M., de Barros, S., Busse, R., & Bouloumie, A. (2007). Chemotaxis and differentiation of human adipose tissue CD34+/CD31− progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells. Stem Cells, 25(9), 2269–2276.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Ma, J., Ge, J., Zhang, S., Sun, A., Shen, J., Chen, L., et al. (2005). Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Research in Cardiology, 100(3), 217–223.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Kondo, K., Shintani, S., Shibata, R., Murakami, H., Murakami, R., Imaizumi, M., et al. (2009). Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(1), 61–66. doi:10.1161/ATVBAHA.108.166496.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Traktuev, D. O., Prater, D. N., Merfeld-Clauss, S., Sanjeevaiah, A. R., Saadatzadeh, M. R., Murphy, M., et al. (2009). Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation Research, 104(12), 1410–1420.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109(10), 1292–1298.

    PubMed  Article  Google Scholar 

  42. 42.

    Frangogiannis, N. G. (2004). Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflammation Research, 53(11), 585–595.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Wynn, T. (2008). Cellular and molecular mechanisms of fibrosis. Journal of Pathology, 214(2), 199–210.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676. doi:10.1038/nm0603.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Li, B., Zeng, Q., Wang, H., Shao, S., Mao, X., Zhang, F., et al. (2007). Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coronary Artery Disease, 18(3), 221–227.

    PubMed  Article  Google Scholar 

  46. 46.

    Chacko, S. M., Khan, M., Kuppusamy, M. L., Pandian, R. P., Varadharaj, S., Selvendiran, K., et al. (2009). Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1263–H1273.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Van Belle, E., Witzenbichler, B., Chen, D., Silver, M., Chang, L., Schwall, R., et al. (1998). Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation, 97(4), 381–390.

    PubMed  Google Scholar 

  48. 48.

    Nakamura, T., Matsumoto, K., Mizuno, S., Sawa, Y., Matsuda, H., & Nakamura, T. (2005). Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. American Journal of Physiology. Heart and Circulatory Physiology, 288, H2131–H2139.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Jayasankar, V., Woo, Y. J., Pirolli, T. J., Bish, L. T., Berry, M. F., Burdick, J., et al. (2005). Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure. Journal of Cardiac Surgery, 20(1), 93–101. doi:10.1111/j.0886-0440.2005.200373.x.

    PubMed  Article  Google Scholar 

  50. 50.

    Dai, C., & Liu, Y. (2004). Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. Journal of the American Society of Nephrology, 15(6), 1402–1412.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Cai, L., Johnstone, B. H., Cook, T. G., Tan, J., Fishbein, M. C., Chen, P. S., et al. (2008). IFATS Series: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells, 27(1), 230–237.

    Article  Google Scholar 

  52. 52.

    McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J. B., Floyd, Z. E., Hammill, L., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 24(5), 1246–1253.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Crop, M. J., Baan, C. C., Korevaar, S. S., Ijzermans, J. N., Pescatori, M., Stubbs, A. P., et al. (2010). Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clinical and Experimental Immunology, 162(3), 474–486. doi:10.1111/j.1365-2249.2010.04256.x.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Sun, N., Panetta, N. J., Gupta, D. M., Wilson, K. D., Lee, A., Jia, F., et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15720–15725.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Tat, P. A., Sumer, H., Jones, K. L., Upton, K., & Verma, P. J. (2010). The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transplantation, 19(5), 525–536. doi:10.3727/096368910X491374.

    Google Scholar 

  56. 56.

    Aoki, T., Ohnishi, H., Oda, Y., Tadokoro, M., Sasao, M., Kato, H., et al. (2010). Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Eng Part A, 16(7), 2197–2206. doi:10.1089/ten.TEA.2009.0747.

    Google Scholar 

  57. 57.

    Sugii, S., Kida, Y., Kawamura, T., Suzuki, J., Vassena, R., Yin, Y. Q., et al. (2010). Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3558–3563. doi:10.1073/pnas.0910172106.

  58. 58.

    Mann, D. L. (1999). Mechanisms and models in heart failure: a combinatorial approach. Circulation, 100(9), 999–1008.

    PubMed  CAS  Google Scholar 

  59. 59.

    Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543–1553.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V., & Weber, K. T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. Journal of Molecular and Cellular Cardiology, 27(6), 1281–1292.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Penn, M. S. (2009). Importance of the SDF-1:CXCR4 axis in myocardial repair. Circulation Research, 104(10), 1133–1135.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667–2677.

    PubMed  Article  Google Scholar 

  63. 63.

    Schenke-Layland, K., Strem, B. M., Jordan, M. C., Deemedio, M. T., Hedrick, M. H., Roos, K. P., et al. (2008). Adipose tissue-derived cells improve cardiac function following myocardial infarction. Journal of Surgical Research, 153(2), 217–223.

    PubMed  Article  Google Scholar 

  64. 64.

    Bai, X., Yan, Y., Song, Y. H., Seidensticker, M., Rabinovich, B., Metzele, R., et al. (2009). Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. European Heart Journal, 31(4), 489–501.

    PubMed  Article  Google Scholar 

  65. 65.

    Jumabay, M., Matsumoto, T., Yokoyama, S., Kano, K., Kusumi, Y., Masuko, T., et al. (2009). Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. Journal of Molecular and Cellular Cardiology, 47(5), 565–575.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    van der Bogt, K. E., Schrepfer, S., Yu, J., Sheikh, A. Y., Hoyt, G., Govaert, J. A., et al. (2009). Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart. Transplantation, 87(5), 642–652.

    PubMed  Article  Google Scholar 

  67. 67.

    Zhu, X. Y., Zhang, X. Z., Xu, L., Zhong, X. Y., Ding, Q., & Chen, Y. X. (2009). Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochemical and Biophysical Research Communications, 379(4), 1084–1090. doi:10.1016/j.bbrc.2009.01.019.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Wang, L., Deng, J., Tian, W., Xiang, B., Yang, T., Li, G., et al. (2009). Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297(3), H1020–H1031.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Bayes-Genis, A., Soler-Botija, C., Farre, J., Sepulveda, P., Raya, A., Roura, S., et al. (2010). Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 49(5), 771–780. doi:10.1016/j.yjmcc.2010.08.010.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97(5), 343–347.

    PubMed  Article  Google Scholar 

  71. 71.

    Virag, J. I., & Murry, C. E. (2003). Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. American Journal of Pathology, 163(6), 2433–2440.

    PubMed  Article  Google Scholar 

  72. 72.

    Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12(4), 459–465.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Mazo, M., Planat-Benard, V., Abizanda, G., Pelacho, B., Leobon, B., Gavira, J. J., et al. (2008). Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure, 10(5), 454–462.

    PubMed  Article  Google Scholar 

  74. 74.

    Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45(4), 530–544.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 204(12), 3037–3047.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Rigol, M., Solanes, N., Farre, J., Roura, S., Roque, M., Berruezo, A., et al. (2010). Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration. Journal of Cardiac Failure, 16(4), 357–366. doi:10.1016/j.cardfail.2009.12.006.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ISCIII PI050168, PI070474, CP09/00333, and ISCIII-RETIC RD06/0014, MICCIN PLE2009-0116, and PSE SINBAD, Gobierno de Navarra (Departamento de Educación), Comunidad de Trabajo de los Pirineos (CTP), European Union Framework Project VII (INELPY), Caja de Ahorros de Navarra (Programa Tu Eliges: Tu Decides), and the “UTE project CIMA”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felipe Prosper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazo, M., Gavira, J.J., Pelacho, B. et al. Adipose-derived Stem Cells for Myocardial Infarction. J. of Cardiovasc. Trans. Res. 4, 145–153 (2011). https://doi.org/10.1007/s12265-010-9246-y

Download citation

Keywords

  • Myocardial infarction
  • Adipose stem cells
  • Cardiac regeneration