Skip to main content

Advertisement

Log in

Clenbuterol Induces Cardiac Myocyte Hypertrophy via Paracrine Signalling and Fibroblast-derived IGF-1

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The β2-selective adrenoreceptor agonist clenbuterol promotes both skeletal and cardiac muscle hypertrophy and is undergoing clinical trials in the treatment of muscle wasting and heart failure. We have previously demonstrated that clenbuterol induces a mild physiological ventricular hypertrophy in vivo with normal contractile function and without induction of α-skeletal muscle actin (αSkA), a marker of pathological hypertrophy. The mechanisms of this response remain poorly defined. In this study, we examine the direct action of clenbuterol on cardiocyte cultures in vitro. Clenbuterol treatment resulted in increased cell size of cardiac myocytes with increased protein accumulation and myofibrillar organisation characteristic of hypertrophic growth. Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed elevated mRNA expression of ANP and brain natriuretic peptide (BNP) but without change in αSkA, consistent with physiological hypertrophic growth. Clenbuterol-treated cultures also showed elevated insulin-like growth factor I (IGF-1) mRNA and activation of the protein kinase Akt. Addition of either IGF-1 receptor-blocking antibodies or LY294002 in order to inhibit phosphatidylinositol 3-kinase, a downstream effector of the IGF-1 receptor, inhibited the hypertrophic response indicating that IGF-1 signalling is required. IGF-1 expression localised primarily to the minor population of cardiac fibroblasts present in the cardiocyte cultures. Together these data show that clenbuterol acts to induce mild cardiac hypertrophy in cardiac myocytes via paracrine signalling involving fibroblast-derived IGF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yacoub, M. H. (2001). A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery. European Heart Journal, 22(7), 534–540.

    Article  PubMed  CAS  Google Scholar 

  2. Birks, E. J., Tansley, P. D., Hardy, J., George, R. S., Bowles, C. T., Burke, M., et al. (2006). Left ventricular assist device and drug therapy for the reversal of heart failure. The New England Journal of Medicine, 355(18), 1873–1884.

    Article  PubMed  CAS  Google Scholar 

  3. Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacology & Therapeutics, 123(2), 255–278.

    Article  CAS  Google Scholar 

  4. Souders, C. A., Bowers, S. L., & Baudino, T. A. (2009). Cardiac fibroblast: the renaissance cell. Circulation Research, 105(12), 1164–1176.

    Article  PubMed  CAS  Google Scholar 

  5. Kakkar, R., & Lee, R. T. (2010). Intramyocardial fibroblast myocyte communication. Circulation Research, 106(1), 47–57.

    Article  PubMed  CAS  Google Scholar 

  6. Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. Journal of Clinical Investigation, 120(1), 254–265.

    Article  PubMed  CAS  Google Scholar 

  7. Petrou, M., Wynne, D. G., Boheler, K. R., & Yacoub, M. H. (1995). Clenbuterol induces hypertrophy of the latissimus dorsi muscle and heart in the rat with molecular and phenotypic changes. Circulation, 92(suppl II), 483–489.

    CAS  Google Scholar 

  8. Dorn, G. W., Robbins, J., & Sugden, P. H. (2003). Phenotyping hypertrophy: eschew obfuscation. Circulation Research, 92(11), 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  9. Soppa, G. K., Lee, J., Stagg, M. A., Felkin, L. E., Barton, P. J., Siedlecka, U., et al. (2008). Role and possible mechanisms of clenbuterol in enhancing reverse remodelling during mechanical unloading in murine heart failure. Cardiovascular Research, 77(4), 695–706.

    Article  PubMed  CAS  Google Scholar 

  10. Frey, N., & Olson, E. N. (2003). Cardiac hypertrophy: the good, the bad, and the ugly. Annual Review of Physiology, 65, 45–79.

    Article  PubMed  CAS  Google Scholar 

  11. Duerr, R. L., Huang, S., Miraliakbar, H. R., Clark, R., Chien, K. R., & Ross, J., Jr. (1995). Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. Journal of Clinical Investigation, 95(2), 619–627.

    Article  PubMed  CAS  Google Scholar 

  12. Fuller, S. J., Mynett, J. R., & Sugden, P. H. (1992). Stimulation of cardiac protein synthesis by insulin-like growth factors. The Biochemical Journal, 282(Pt 1), 85–90.

    PubMed  CAS  Google Scholar 

  13. Delaughter, M. C., Taffet, G. E., Fiorotto, M. L., Entman, M. L., & Schwartz, R. J. (1999). Local insulin-like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. The FASEB Journal, 13(14), 1923–1929.

    PubMed  CAS  Google Scholar 

  14. McMullen, J. R., Shioi, T., Huang, W. Y., Zhang, L., Tarnavski, O., Bisping, E., et al. (2004). The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. The Journal of Biological Chemistry, 279(6), 4782–4793.

    Article  PubMed  CAS  Google Scholar 

  15. Santini, M. P., Tsao, L., Monassier, L., Theodoropoulos, C., Carter, J., Lara-Pezzi, E., et al. (2007). Enhancing repair of the mammalian heart. Circulation Research, 100(12), 1732–1740.

    Article  PubMed  CAS  Google Scholar 

  16. Awede, B. L., Thissen, J. P., & Lebacq, J. (2002). Role of IGF-I and IGFBPs in the changes of mass and phenotype induced in rat soleus muscle by clenbuterol. American Journal of Physiology. Endocrinology and Metabolism, 282(1), E31–E37.

    PubMed  CAS  Google Scholar 

  17. Bhavsar, P. K., Brand, N. J., Yacoub, M. H., & Barton, P. J. R. (1996). Isolation and characterisation of the human cardiac troponin I gene (TNNI3). Genomics, 35, 11–23.

    Article  PubMed  CAS  Google Scholar 

  18. Chomczynski, P. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  19. Hall, L. J., Kajimoto, Y., Bichell, D., Kim, S. W., James, P. L., Counts, D., et al. (1992). Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA and Cell Biology, 11(4), 301–313.

    Article  PubMed  CAS  Google Scholar 

  20. Wong, K., Boheler, K. R., Bishop, J., Petrou, M., & Yacoub, M. (1998). Clenbuterol induces cardiac hypertrophy with normal function, morphological and molecular features. Cardiovascular Research, 37, 115–122.

    Article  PubMed  CAS  Google Scholar 

  21. Sharma, S., Ying, J., Razeghi, P., Stepkowski, S., & Taegtmeyer, H. (2006). Atrophic remodeling of the transplanted rat heart. Cardiology, 105(2), 128–136.

    Article  PubMed  Google Scholar 

  22. Barton, P. J. R., Felkin, L. E., Birks, E. J., Cullen, M. E., Banner, N. R., Grindle, S., et al. (2005). Myocardial IGF-I gene expression during recovery from heart failure following combined LVAD and clenbuterol therapy. Circulation, 112(Supple 9), 146–150.

    Google Scholar 

  23. Shioi, T., McMullen, J. R., Kang, P. M., Douglas, P. S., Obata, T., Franke, T. F., et al. (2002). Akt/protein kinase B promotes organ growth in transgenic mice. Molecular and Cellular Biology, 22(8), 2799–2809.

    Article  PubMed  CAS  Google Scholar 

  24. Matsui, T., Li, L., Wu, J. C., Cook, S. A., Nagoshi, T., Picard, M. H., et al. (2002). Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. The Journal of Biological Chemistry, 277(25), 22896–22901.

    Article  PubMed  CAS  Google Scholar 

  25. Condorelli, G., Drusco, A., Stassi, G., Bellacosa, A., Roncarati, R., Iaccarino, G., et al. (2002). Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 99(19), 12333–12338.

    Article  PubMed  CAS  Google Scholar 

  26. Hardt, S. E., & Sadoshima, J. (2002). Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circulation Research, 90(10), 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  27. Shioi, T., McMullen, J. R., Tarnavski, O., Converso, K., Sherwood, M. C., Manning, W. J., et al. (2003). Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation, 107(12), 1664–1670.

    Article  PubMed  CAS  Google Scholar 

  28. Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., et al. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 27(2), 195–200.

    Article  PubMed  CAS  Google Scholar 

  29. Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N., & Rosenthal, N. (1999). IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature, 400(6744), 581–585.

    Article  PubMed  CAS  Google Scholar 

  30. Harada, M., Itoh, H., Nakagawa, O., Ogawa, Y., Miyamoto, Y., Kuwahara, K., et al. (1997). Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation, 96(10), 3737–3744.

    PubMed  CAS  Google Scholar 

  31. King, K. L., Winer, J., Phillips, D. M., Quach, J., Williams, P. M., & Mather, J. P. (1998). Phenylephrine, endothelin, prostaglandin F2alpha' and leukemia inhibitory factor induce different cardiac hypertrophy phenotypes in vitro. Endocrine, 9(1), 45–55.

    Article  PubMed  CAS  Google Scholar 

  32. Kuwahara, K., Saito, Y., Harada, M., Ishikawa, M., Ogawa, E., Miyamoto, Y., et al. (1999). Involvement of cardiotrophin-1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro. Circulation, 100(10), 1116–1124.

    PubMed  CAS  Google Scholar 

  33. Sano, M., Fukuda, K., Kodama, H., Pan, J., Saito, M., Matsuzaki, J., et al. (2000). Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. The Journal of Biological Chemistry, 275(38), 29717–29723.

    Article  PubMed  CAS  Google Scholar 

  34. Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101(3), 313–321.

    Article  PubMed  CAS  Google Scholar 

  35. Rockman, H. A., Koch, W. J., & Lefkowitz, R. J. (2002). Seven transmembrane-spanning receptors and heart function. Nature, 415(6868), 206–212.

    Article  PubMed  CAS  Google Scholar 

  36. Ahmet, I., Krawczyk, M., Heller, P., Moon, C., Lakatta, E. G., & Talan, M. I. (2004). Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation, 110(9), 1083–1090.

    Article  PubMed  CAS  Google Scholar 

  37. Bristow, M. R. (2000). beta-adrenergic receptor blockade in chronic heart failure. Circulation, 101(5), 558–569.

    PubMed  CAS  Google Scholar 

  38. Zaugg, M., Xu, W., Lucchinetti, E., Shafiq, S. A., Jamali, N. Z., & Siddiqui, M. A. Q. (2000). B-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation, 102, 344–350.

    PubMed  CAS  Google Scholar 

  39. Engelhardt, S., Hein, L., Wiesmann, F., & Lohse, M. J. (1999). Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 96(12), 7059–7064.

    Article  PubMed  CAS  Google Scholar 

  40. Milano, C. A., Allen, L. F., Rockman, H. A., Dolber, P. C., McMinn, T. R., Chien, K. R., et al. (1994). Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science, 264(5158), 582–586.

    Article  PubMed  CAS  Google Scholar 

  41. Liggett, S. B., Tepe, N. M., Lorenz, J. N., Canning, A. M., Jantz, T. D., Mitarai, S., et al. (2000). Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation, 101(14), 1707–1714.

    PubMed  CAS  Google Scholar 

  42. Dorn, G. W., Tepe, N. M., Lorenz, J. N., Koch, W. J., & Liggett, S. B. (1999). Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6400–6405.

    Article  PubMed  CAS  Google Scholar 

  43. Chruscinski, A. J., Rohrer, D. K., Schauble, E., Desai, K. H., Bernstein, D., & Kobilka, B. K. (1999). Targeted disruption of the beta2 adrenergic receptor gene. The Journal of Biological Chemistry, 274(24), 16694–16700.

    Article  PubMed  CAS  Google Scholar 

  44. Burniston, J. G., Ng, Y., Clark, W. A., Colyer, J., Tan, L. B., & Goldspink, D. F. (2002). Myotoxic effects of clenbuterol in the rat heart and soleus muscle. Journal of Applied Physiology, 93(5), 1824–1832.

    PubMed  CAS  Google Scholar 

  45. Burniston, J. G., Tan, L. B., & Goldspink, D. F. (2005). beta2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. Journal of Applied Physiology, 98(4), 1379–1386.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the British Heart Foundation and by the Magdi Yacoub Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. R. Barton.

Additional information

Pankaj K. Bhavsar and Nigel J. Brand contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhavsar, P.K., Brand, N.J., Felkin, L.E. et al. Clenbuterol Induces Cardiac Myocyte Hypertrophy via Paracrine Signalling and Fibroblast-derived IGF-1. J. of Cardiovasc. Trans. Res. 3, 688–695 (2010). https://doi.org/10.1007/s12265-010-9199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9199-1

Keywords

Navigation