Skip to main content

Advertisement

Log in

Nifedipine Inhibits Cardiac Hypertrophy and Left Ventricular Dysfunction in Response to Pressure Overload

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Pathological hypertrophy is commonly induced by activation of protein kinases phosphorylating class II histone deacetylases (HDACs) and desuppression of transcription factors, such as nuclear factor of activated T cell (NFAT). We hypothesized that nifedipine, an L-type Ca2+ channel blocker, inhibits Ca2+ calmodulin-dependent kinase II (CaMKII) and NFAT, thereby inhibiting pathological hypertrophy. Mice were subjected to sham operation or transverse aortic constriction (TAC) for 2 weeks with or without nifedipine (10 mg/kg/day). Nifedipine did not significantly alter blood pressure or the pressure gradient across the TAC. Nifedipine significantly suppressed TAC-induced increases in left ventricular (LV) weight/body weight (BW; 5.09 ± 0.80 vs. 4.16 ± 0.29 mg/g, TAC without and with nifedipine, n = 6,6, p < 0.05), myocyte cross-sectional area (1,681 ± 285 vs. 1,434 ± 197 arbitrary units, p < 0.05), and expression of fetal-type genes, including atrial natriuretic factor (35. 9 ± 6.4 vs. 8.6 ± 3.3 arbitrary units, p < 0.05). TAC-induced increases in lung weight/BW (7.7 ± 0.9 vs. 5.5 ± 0.5 mg/g, p < 0.05) and decreases in LV ejection fraction (65.5 ± 3.1% vs. 75.7 ± 3.3%, p < 0.05) were attenuated by nifedipine. Nifedipine caused significant inhibition of TAC-induced activation of NFAT-mediated transcription, which was accompanied by suppression of Thr 286 phosphorylation in CaMKII. Nifedipine inhibited activation of CaMKII and NFAT by phenylephrine, accompanied by suppression of Ser 632 phosphorylation and nuclear exit of HDAC4 in cardiac myocytes. These results suggest that a subpressor dose of nifedipine inhibits pathological hypertrophy in the heart by inhibiting activation of CaMKII and NFAT, a signaling mechanism commonly activated in pathological hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Backs, J., & Olson, E. N. (2006). Control of cardiac growth by histone acetylation/deacetylation. Circulation Research, 98(1), 15–24.

    Article  CAS  PubMed  Google Scholar 

  2. Strauer, B. E., Atef Mahmoud, M., Bayer, F., Bohn, I., Motz, U., & Suppl F. (1984). Reversal of left ventricular hypertrophy and improvement of cardiac function in man by nifedipine. European Heart Journal, 5, 53–60.

    PubMed  Google Scholar 

  3. Zou, Y., Yamazaki, T., Nakagawa, K., Yamada, H., Iriguchi, N., Toko, H., et al. (2002). Continuous blockade of L-type Ca2+ channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension Research, 25(1), 117–124.

    Article  CAS  PubMed  Google Scholar 

  4. Lubsen, J., Wagener, G., Kirwan, B. A., de Brouwer, S., & Poole-Wilson, P. A. (2005). Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with symptomatic stable angina and hypertension: The ACTION trial. Journal of Hypertension, 23(3), 641–648.

    Article  CAS  PubMed  Google Scholar 

  5. Liang, Q., Bueno, O. F., Wilkins, B. J., Kuan, C. Y., Xia, Y., & Molkentin, J. D. (2003). c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO Journal, 22(19), 5079–5089.

    Article  CAS  PubMed  Google Scholar 

  6. Morisco, C., Seta, K., Hardt, S. E., Lee, Y., Vatner, S. F., & Sadoshima, J. (2001). Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. Journal of Biological Chemistry, 276(30), 28586–28597.

    Article  CAS  PubMed  Google Scholar 

  7. Sadoshima, J., Montagne, O., Wang, Q., Yang, G., Warden, J., Liu, J., et al. (2002). The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. Journal of Clinical Investigation, 110(2), 271–279.

    CAS  PubMed  Google Scholar 

  8. Matsui, Y., Nakano, N., Shao, D., Gao, S., Luo, W., Hong, C., et al. (2008). Lats2 is a negative regulator of myocyte size in the heart. Circulation Research, 103(11), 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  9. Yamagishi, S., Nakamura, K., & Matsui, T. (2008). Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine. Current Medicinal Chemistry, 15(2), 172–177.

    Article  CAS  PubMed  Google Scholar 

  10. Neal, J. W., & Clipstone, N. A. (2001). Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. Journal of Biological Chemistry, 276(5), 3666–3673.

    Article  CAS  PubMed  Google Scholar 

  11. Dai, Y. S., Xu, J., & Molkentin, J. D. (2005). The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Molecular and Cellular Biology, 25(22), 9936–9948.

    Article  CAS  PubMed  Google Scholar 

  12. Morisco, C., Sadoshima, J., Trimarco, B., Arora, R., Vatner, D. E., & Vatner, S. F. (2003). Is treating cardiac hypertrophy salutary or detrimental: The two faces of Janus. American Journal of Physiology. Heart and Circulatory Physiology, 284(4), H1043–H1047.

    CAS  PubMed  Google Scholar 

  13. Esposito, G., Rapacciuolo, A., Naga Prasad, S. V., Takaoka, H., Thomas, S. A., Koch, W. J., et al. (2002). Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation, 105(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  14. Diwan, A., & Dorn, G. W., 2nd. (2007). Decompensation of cardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda), 22, 56–64.

    CAS  Google Scholar 

  15. Wilkins, B. J., Dai, Y. S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., et al. (2004). Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circulation Research, 94(1), 110–118.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, T., & Brown, J. H. (2004). Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovascular Research, 63(3), 476–486.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, T., Kohlhaas, M., Backs, J., Mishra, S., Phillips, W., Dybkova, N., et al. (2007). CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. Journal of Biological Chemistry, 282(48), 35078–35087.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, T., Maier, L. S., Dalton, N. D., Miyamoto, S., Ross, J., Jr., Bers, D. M., et al. (2003). The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circulation Research, 92(8), 912–919.

    Article  CAS  PubMed  Google Scholar 

  19. Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N., et al. (2004). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and Cellular Biology, 24(19), 8374–8385.

    Article  CAS  PubMed  Google Scholar 

  20. Martini, J. S., Raake, P., Vinge, L. E., DeGeorge, B., Jr., Chuprun, J. K., Harris, D. M., et al. (2008). Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12457–12462.

    Article  CAS  PubMed  Google Scholar 

  21. Berdeaux, R., Goebel, N., Banaszynski, L., Takemori, H., Wandless, T., Shelton, G. D., et al. (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Medicine, 13(5), 597–603.

    Article  CAS  PubMed  Google Scholar 

  22. Chang, S., Bezprozvannaya, S., Li, S., & Olson, E. N. (2005). An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8120–8125.

    Article  CAS  PubMed  Google Scholar 

  23. Molkentin, J. D. (2006). Dichotomy of Ca2+ in the heart: Contraction versus intracellular signaling. Journal of Clinical Investigation, 116(3), 623–626.

    Article  CAS  PubMed  Google Scholar 

  24. Ago, T., Liu, T., Zhai, P., Chen, W., Li, H., Molkentin, J. D., et al. (2008). A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell, 133(6), 978–993.

    Article  CAS  PubMed  Google Scholar 

  25. Erickson, J. R., Joiner, M. L., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., et al. (2008). A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell, 133(3), 462–474.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Daniela Zablocki for critical reading of the manuscript. We also thank Dr. Jeffery D Molkentin for NFAT-Luc mice.

Sources of funding

This work was supported in part by US Public Health Service Grants HL59139, HL67724, HL69020, HL91469, HL67727, HL73048, and AG27211.

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sadoshima.

Additional information

Tetsuro Ago and Yanfei Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ago, T., Yang, Y., Zhai, P. et al. Nifedipine Inhibits Cardiac Hypertrophy and Left Ventricular Dysfunction in Response to Pressure Overload. J. of Cardiovasc. Trans. Res. 3, 304–313 (2010). https://doi.org/10.1007/s12265-010-9182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9182-x

Keywords

Navigation