Skip to main content
Log in

Direct Visualization of Cardiac Radiofrequency Ablation Lesions

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Effective ablation of atrial fibrillation and other cardiac arrhythmias requires precise catheter navigation and controlled delivery of energy to cardiac tissue. In this study, we summarize our initial experience using a fiber optic direct visualization catheter to evaluate and guide placement of endocardial radiofrequency (RF) ablation lesions. RF lesions were created in cadaveric porcine hearts and examined in a blood-filled field using a direct visualization catheter. Direct visualization of RF lesions was repeated in vivo using an ovine model. Lesions and interlesion gaps were clearly identifiable using the direct visualization catheter. It was possible to place lesions in proximity to anatomical landmarks and in relation to one another. Catheter-generated images correlated well with lesion appearance on gross examination. Direct catheter-based visualization is a feasible technique for guiding RF lesion placement, estimating lesion size, and identifying interlesion gaps. Future work is needed to correlate surface appearance with transmurality and electrical isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scheinman, M. M. (2001). Catheter ablation: a personal perspective. Journal of Cardiovascular Electrophysiology, 12, 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  2. Pappone, C., & Vincenzo, S. (2007). Remote navigation and ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 18, S1–S31.

    Article  Google Scholar 

  3. Saliba, W., Reddy, V. Y., Wazni, O., Cummings, J. E., Burkhardt, J. D., Haissaguerre, M., et al. (2008). Atrial fibrillation using a robotic catheter remote control system: initial human experience and long-term follow-up results. Journal of the American College of Cardiology, 51, 2412–2413.

    Article  Google Scholar 

  4. Chierchia, G. B., Capulzini, L., de Asmundis, C., Sarkozy, A., Roos, M., Paparella, G., et al. (2008). First experience with real-time three-dimensional transesophageal echocardiography-guided transseptal in patients undergoing atrial fibrillation ablation. Europace, 10, 1325–1328.

    Article  PubMed  Google Scholar 

  5. Barrett, C. D., & Natale, A. (2008). Toward balloon-based technologies: all that glitters is not gold. Journal of Cardiovascular Electrophysiology, 19, 952–954.

    Article  PubMed  Google Scholar 

  6. Schmidt, B., Antz, M., Ernst, S., Ouyang, F., Falk, P., Chun, J. K., et al. (2007). Pulmonary vein isolation by high-intensity focused ultrasound: first-in-man study with a steerable balloon catheter. Heart Rhythm, 4, 575–584.

    Article  PubMed  Google Scholar 

  7. Phillips, K. P., Schwikert, R. A., Saliba, W. I., Themistoclakis, S., Raviele, A., Bonso, A., et al. (2008). Anatomic location of pulmonary vein electrical disconnection with balloon-based catheter ablation. Journal of Cardiovascular Electrophysiology, 19, 14–18.

    Article  PubMed  Google Scholar 

  8. Neumann, T., Vogt, J., Schumacher, B., Dorszewski, A., Kuniss, M., Neuser, H., et al. (2008). Circumferential pulmonary vein isolation with the cryoballoon technique results from a prospective 3-center study. Journal of the American College of Cardiology, 52, 273–278.

    Article  PubMed  Google Scholar 

  9. Prystowsky, E. N. (2008). The history of atrial fibrillation: the last 100 years. Journal of Cardiovascular Electrophysiology, 19, 575–582.

    Article  PubMed  Google Scholar 

  10. Anh, D. J., Eversull, C. S., Chen, H. A., Mofrad, P., Mourlas, N. J., Mead, R. H., et al. (2008). Characterization of human coronary sinus valves by direct visualization during biventricular pacemaker implantation. Pacing and Clinical Electrophysiology, 31, 78–82.

    Article  PubMed  CAS  Google Scholar 

  11. Anh, D. J., Chen, H. A., Eversull, C. S., Mourlas, N. J., Mead, R. H., Liem, L. B., et al. (2006). Early human experience with use of a deflectable fiberoptic endocardial visualization catheter to facilitate coronary sinus cannulation. Heart Rhythm, 3, 875–878.

    Article  PubMed  CAS  Google Scholar 

  12. Fujimura, O., Lawton, M. A., & Koch, C. A. (1994). Direct in vivo visualization of right cardiac anatomy by fiberoptic endoscopy: observation of radiofrequency-induced acute lesions around the ostium of the coronary sinus. European Heart Journal, 15, 534–540.

    PubMed  CAS  Google Scholar 

  13. Nazarian, S., Knight, B. P., & Dickfeld, T. L. (2005). Direct visualization of coronary sinus ostium and branches with a flexible steerable fiberoptic infrared endoscope. Heart Rhythm, 2, 844–848.

    Article  PubMed  Google Scholar 

  14. Themistoclakis, S., Wazni, O. M., & Saliba, W. (2006). Endoscopic fiberoptic assessment of balloon occlusion of the pulmonary vein ostium in humans: comparison with phased-array intracardiac echocardiography. Heart Rhythm, 3, 44–49.

    Article  PubMed  Google Scholar 

  15. Thiagalingam, A., D’Avila, A., Foley, L., Fox, M., Rothe, C., Miller, D., et al. (2008). Full-color direct visualization of the atrial septum to guide transseptal punture. Journal of Cardiovascular Electrophysiology, 19, 1310–1315.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian S. Eversull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eversull, C.S., Lin, B., Irani, A.R. et al. Direct Visualization of Cardiac Radiofrequency Ablation Lesions. J. of Cardiovasc. Trans. Res. 2, 198–201 (2009). https://doi.org/10.1007/s12265-009-9094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9094-9

Keywords

Navigation