Skip to main content
Log in

Mesenchymal Stem Cells and Cardiac Repair: Principles and Practice

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are cluster of differentiation 34 (CD34)–CD45-negative nonhematopoietic progenitors derived typically from the stromal fraction of the bone marrow. These stem cells display multipotent properties with a demonstrable differentiation capacity along multiple mesodermal lineages. In the setting of myocardial injury, preclinical studies indicate benefit of both autologous and allogeneic transplantation in line with a recognized immunotolerant profile. Initial clinical experience supports the value of mesenchymal stem-cell-based therapy in ischemic cardiomyopathy. Experience is however limited to naïve mesenchymal stem cells, with efforts underway to identify optimal means of enhancing the cardiogenic potential of transplanted cells through guided cardiopoiesis with the ultimate aim of achieving standardized therapy of the ischemic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.

    Article  PubMed  CAS  Google Scholar 

  2. Prockop, D. J. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clinical Pharmacology and Therapeutics, 82, 241–243.

    Article  PubMed  CAS  Google Scholar 

  3. Dazzi, F., & Horwood, N. (2007). Potential of mesenchymal stem cell therapy. Current Opinion in Oncology, 19, 650–655.

    Article  PubMed  Google Scholar 

  4. Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: A revolution in therapeutics—Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82, 252–264.

    Article  PubMed  CAS  Google Scholar 

  5. Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213, 341–347.

    Article  PubMed  CAS  Google Scholar 

  6. Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: A novel surface marker for the identification of MSCs. Blood, 109, 4245–4248.

    Article  PubMed  CAS  Google Scholar 

  7. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–38.

    Article  PubMed  Google Scholar 

  8. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., & Kloner, R. A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112, 214–223.

    Article  PubMed  Google Scholar 

  9. Martin, B., Senechal, G., Pittenger, M., & Byrne, B. (1999). Human mesenchymal stem cells (hMSCs) exhibit myogenic differentiation when implanted in infarcted rat myocardium. Circulation, 100, 1–54.

    Google Scholar 

  10. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Annals of Thoracic Surgery, 73, 1919–1926.

    Article  PubMed  Google Scholar 

  11. Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111, 150–156.

    Article  PubMed  CAS  Google Scholar 

  12. Amado, L. C., Salaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Shan, S. J., Zhang, J. J., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92–95.

    Article  PubMed  Google Scholar 

  14. Hare, J. (2007). Late breaking clinical trials. In Annual meeting of the American College of Cardiology, March 2007.

  15. Le Blanc, K., & Ringdén, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262, 509–525.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, J. S., Shum-Tim, D., Chedrawy, E., & Chiu, R. C. (2001). The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. Journal of Thoracic and Cardiovascular Surgery, 122, 699–1005.

    Article  PubMed  CAS  Google Scholar 

  17. Yoon, Y. S., Park, J. S., Tkebuchava, T., Luedeman, C., & Losordo, D. W. (2004). Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation, 109, 3154–3157.

    Article  PubMed  Google Scholar 

  18. Bartunek, J., Croissant, J. D., Wijns, W., Gofflot, S., de Lavareille, A., Vanderheyden, M., et al. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infracted myocardium. American Journal of Physiology Heart and Circulatory Physiology, 292, H1095–H1104.

    Article  PubMed  CAS  Google Scholar 

  19. Behfar, A., Zingman, L., Hodgson, D., Rauzier, J., Kane, G., & Terzic, A. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1602.

    Article  PubMed  Google Scholar 

  20. Olson, E. (2004). A decade of discoveries in cardiac biology. Nature Medicine, 10, 467–474.

    Article  PubMed  CAS  Google Scholar 

  21. Behfar, A., & Terzic, A. (2007). Optimizing adult mesenchymal stem cell for heart repair. Journal of Molecular and Cellular Cardiology, 42, 283–284.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura, T., & Schneider, M. (2003). The way to a human’s heart is through the stomach. Visceral endoderm-like cells drive human embryonic stem cells to a cardiac fate. Circulation, 107, 2638–2639.

    Article  PubMed  Google Scholar 

  23. Tomita, S., Li, R.-K., Weisel, R. D., Micjke, D. A. G., & Jia, Z. Q. (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 100(Suppl), II247–II256.

    PubMed  CAS  Google Scholar 

  24. Tomita, S., Mickle, D. A. G., Weissel, R. D., et al. (2002). Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. Journal of Thoracic and Cardiovascular Surgery, 123, 1132–1140.

    Article  PubMed  Google Scholar 

  25. Li, X. H., Yu, X. Y., Lin, Q. X., Deng, C. Y., Shan, Z. X., Yang, M., et al. (2007). Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. Journal of Molecular and Cellular Cardiology, 42, 295–303.

    Article  PubMed  CAS  Google Scholar 

  26. Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.

    Article  PubMed  CAS  Google Scholar 

  27. Behfar, A., & Terzic, A. (2006). Derivation of a cardiogenic population from human mesenchymal stem cells yields cardiac progeny. Nature Clinical Practice Cardiovascular Medicine, 3, S78–S82.

    Article  PubMed  CAS  Google Scholar 

  28. Faustino, R. S., Behfar, A., Perez-Terzic, C., & Terzic, A. (2008). Genomic chart guiding embryonic stem cell cardiopoiesis. Genome Biology, 9, R6.

    Article  PubMed  CAS  Google Scholar 

  29. Arrell, D. K., Niederlander, N. J., Faustino, R. S., Behafr, A., & Terzic, A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of TNF{alpha}-primed endodermal secretome. Stem Cells, 26, 387–400.

    Article  PubMed  CAS  Google Scholar 

  30. Mazhari, R., & Hare, J. M. (2007). Mechanisms of action of mesenchymal stem cells in cardiac repair: Potential influences on the cardiac stem cell niche. Nature Clinical Practice Cardiovascular Medicine, 4(Suppl1), S21–S26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Drs. J Bartunek, M. Vanderheyden, and W. Wijns are members of a nonprofit organization which is a founding member of Cardio3Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Bartunek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartunek, J., Behfar, A., Vanderheyden, M. et al. Mesenchymal Stem Cells and Cardiac Repair: Principles and Practice. J. of Cardiovasc. Trans. Res. 1, 115–119 (2008). https://doi.org/10.1007/s12265-008-9021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-008-9021-5

Keywords

Navigation