Skip to main content

Advertisement

Log in

Stem Cells and Cardiac Repair: A Critical Analysis

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485–486, 2007; Chien, J Clin Investig 116:1838–1840, 2006; Giles, Nature 442:344–347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Check, E. (2007). Stem cells: The hard copy. Nature, 446(7135), 485–486.

    PubMed  CAS  Google Scholar 

  2. Chien, K. R. (2006). Lost and found: Cardiac stem cell therapy revisited. Journal of Clinical Investigation, 116(7), 1838–1840.

    PubMed  CAS  Google Scholar 

  3. Giles, J. (2006). The trouble with replication. Nature, 442(7101), 344–347.

    PubMed  CAS  Google Scholar 

  4. Pileggi, A., Ricordi, C., Kenyon, N. S., Froud, T., Baidal, D. A., Kahn, A., et al. (2004). Twenty years of clinical islet transplantation at the diabetes research institute-university of miami. Clinical Transplants, 177–204.

  5. Dinsmore, J. H. (1998). Treatment of neurodegenerative diseases with neural cell transplantation. Expert Opinion on Investigational Drugs, 7(4), 527–534.

    PubMed  CAS  Google Scholar 

  6. Strom, S. C., Bruzzone, P., Cai, H., Ellis, E., Lehmann, T., Mitamura, K., et al. (2006). Hepatocyte transplantation: Clinical experience and potential for future use. Cell Transplantation, 15(1), S105–S110.

    PubMed  Google Scholar 

  7. Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183.

    PubMed  Google Scholar 

  8. Dib, N., & Dinsmore, J. (2006). The future of cell therapy for myocardial regeneration. American Heart Journal, 4(3), 211–215; quiz 216.

    Google Scholar 

  9. Caulfield, J. B., Leinbach, R., & Gold, H. (1976). The relationship of myocardial infarct size and prognosis. Circulation, 53(3), I141–I144.

    PubMed  CAS  Google Scholar 

  10. Nag, A. C., & Zak, R. (1979). Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. Journal of Anatomy, 129, 541–559.

    PubMed  CAS  Google Scholar 

  11. Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44(4), 503–512.

    PubMed  CAS  Google Scholar 

  12. Klug, M. G., Soonpaa, M. H., Koh, G. Y., & Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. Journal of Clinical Investigation, 98(1), 216–224.

    PubMed  CAS  Google Scholar 

  13. Li, R. K., Mickle, D. A., Weisel, R. D., Zhang, J. & Mohabeer, M. K. (1996). In vivo survival and function of transplanted rat cardiomyocytes. Circulation Research, 78(2), 283–288.

    PubMed  CAS  Google Scholar 

  14. Scorsin, M., Hagege, A., Vilquin, J. T., Fiszman, M., Marotte, F., Samuel, J. L., et al. (2000). Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. Journal of Thoracic and Cardiovascular Surgery, 119(6), 1169–1175.

    PubMed  CAS  Google Scholar 

  15. Murry, C. E., Wiseman, R. W., Schwartz, S. M., & Hauschka, S. D., (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. Journal of Clinical Investigation, 98(11), 2512–2523.

    PubMed  CAS  Google Scholar 

  16. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Natural Medicines, 4(8), 929–933.

    CAS  Google Scholar 

  17. Pouzet, B., Vilquin, J. T., Hagege, A. A., Scorsin, M., Messas, E., Fiszman, M., et al. (2000). Intramyocardial transplantation of autologous myoblasts: Can tissue processing be optimized? Circulation, 102(19 Suppl 3), III210–III215.

    PubMed  CAS  Google Scholar 

  18. Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Jia, Z. Q., Tomita, S., et al. (1999). Fetal cell transplantation: A comparison of three cell types. Journal of Thoracic and Cardiovascular Surgery, 118(4), 715–724.

    PubMed  CAS  Google Scholar 

  19. Hutcheson, K. A., Atkins, B. Z., Hueman, M. T., Hopkins, M. B., Glower, D. D., & Taylor, D. A. (2000). Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplantation, 9(3), 359–368.

    PubMed  CAS  Google Scholar 

  20. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7(4), 430–436.

    CAS  Google Scholar 

  21. Lanza, R., Moore, M. A., Wakayama, T., Perry, A. C., Shieh, J. H., Hendrikx, J., et al. (2004). Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circulation Research, 94(6), 820–827.

    PubMed  CAS  Google Scholar 

  22. Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., et al. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509.

    PubMed  CAS  Google Scholar 

  23. Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94(2), 223–229.

    PubMed  CAS  Google Scholar 

  24. Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N., (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communication, 342(2), 662–670.

    CAS  Google Scholar 

  25. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.

    PubMed  CAS  Google Scholar 

  26. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: Short- and long-term effects. Circulation, 112(2), 214–223.

    PubMed  Google Scholar 

  27. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Annals of Thoracic Surgery, 73(6), 1919–1925; discussion 1926.

    PubMed  Google Scholar 

  28. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428(6983), 668–673.

    PubMed  CAS  Google Scholar 

  29. Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001).Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229; discussion 229–230.

    Article  PubMed  CAS  Google Scholar 

  30. Agbulut, O., Vandervelde, S., Al Attar, N., Larghero, J., Ghostine, S., Leobon, B., et al. (2004). Comparison of human skeletal myoblasts and bone marrow-derived cd133+ progenitors for the repair of infarcted myocardium. Journal of the American College of Cardiology, 44(2), 458–463.

    PubMed  CAS  Google Scholar 

  31. Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., et al. (2005). Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309(5732), 314–317.

    PubMed  CAS  Google Scholar 

  32. Yoon, Y. S., Wecker, A., Heyd, L., Park, J. S., Tkebuchava, T., Kusano, K., et al. (2006). Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. Journal of Clinical Investigation, 115(2), 326–338.

    Google Scholar 

  33. Zeng, F., Chen, M. J., Baldwin, D. A., Gong, Z. J., Yan, J. B., Qian, H. (2006). Multiorgan engraftment and differentiation of human cord blood cd34+lin- cells in goats assessed by gene expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7801–7806

    PubMed  CAS  Google Scholar 

  34. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–653.

    PubMed  CAS  Google Scholar 

  35. Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.

    PubMed  CAS  Google Scholar 

  36. Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12313–12318.

    PubMed  CAS  Google Scholar 

  37. Dinsmore, J., Ratliff, J., Deacon, T, Pakzaban, P., Jacoby, D. Galpern, W., et al. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplantation, 5(2), 131–143.

    PubMed  CAS  Google Scholar 

  38. Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167(3), 663–671.

    PubMed  CAS  Google Scholar 

  39. Menard, C., Hagege, A. A., Agbulut, O., Barro, M., Morichetti, M. C., Brasselet, C., et al. (2005). Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet, 366(9490), 1005–1012.

    PubMed  Google Scholar 

  40. Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., Fedak, P., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 116(7), 1865–1877.

    PubMed  CAS  Google Scholar 

  41. Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005) Paracrine action accounts for marked protection of ischemic heart by akt-modified mesenchymal stem cells. Natural Medicines, 11(4), 367–368.

    CAS  Google Scholar 

  42. Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., et al. (2007). Secreted frizzled related protein 2 (sfrp2) is the key akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of United States of America, 104(5), 1643–1648.

    CAS  Google Scholar 

  43. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    PubMed  CAS  Google Scholar 

  44. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.

    PubMed  Google Scholar 

  45. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    PubMed  CAS  Google Scholar 

  46. Price, M. J., Chou, C. C., Frantzen, M., Miyamoto, T., Kar, S., Lee, S., et al. (2006). Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 111 231–239.

    PubMed  Google Scholar 

  47. Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y., Cysyk, J., Dong, P., et al. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113(15), 1832–1841.

    PubMed  Google Scholar 

  48. Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.

    PubMed  Google Scholar 

  49. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.

    PubMed  CAS  Google Scholar 

  50. Tolar, J., et al. (2007). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25(2), 371–379.

    PubMed  CAS  Google Scholar 

  51. Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.

    PubMed  CAS  Google Scholar 

  52. Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., et al. (2005). Outgrowth of a transformed cell population derived from normal human bm mesenchymal stem cell culture. Cytotherapy, 7(6), 509–519.

    PubMed  CAS  Google Scholar 

  53. Zhang, Z. X., Guan, L. X., Zhang, K., Wang, S., Cao, P. C., Wang, Y. H., et al. (2007). Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biology International, 31(6), 645–648.

    PubMed  CAS  Google Scholar 

  54. Blau, O., Hofmann, W. K., Baldus, C. D., Thiel, G., Serbent, V., Schumann, E., et al. (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Experimental Hematology, 35(2), 221–229.

    PubMed  CAS  Google Scholar 

  55. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.

    PubMed  CAS  Google Scholar 

  56. Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B, Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.

    PubMed  CAS  Google Scholar 

  57. Schmalbruch, H. (1976). The morphology of regeneration of skeletal muscles in the rat. Tissue Cell, 8(4), 673–692.

    PubMed  CAS  Google Scholar 

  58. Law, P. K., Bertorini, T. E., Goodwin, T. G., Chen, M., Fang, Q. W., Li, H. J., et al. (1990). Dystrophin production induced by myoblast transfer therapy in duchenne muscular dystrophy. Lancet, 336(8707), 114–115.

    PubMed  CAS  Google Scholar 

  59. Karpati, G., Pouliot, Y., Zubrzycka-Gaarn, E., Carpenter, S., Ray, P. N., Worton, R. G., et al. (1989). Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. American Journal of Pathology, 135(1), 27–32.

    PubMed  CAS  Google Scholar 

  60. Guerette, B., Skuk, D., Celestin, F., Huard, C., Tardif, F., Asselin, I., et al. (1997). Prevention by anti-lfa-1 of acute myoblast death following transplantation. Journal of Immunology, 159(5), 2522–2531.

    CAS  Google Scholar 

  61. Neumeyer, A. M., Cros, D., McKenna-Yasek, D., Zawadzka, A., Hoffman, E. P., Pegoraro, E., et al. (1998). Pilot study of myoblast transfer in the treatment of becker muscular dystrophy. Neurology, 51(2), 589–592.

    PubMed  CAS  Google Scholar 

  62. Koh, G.Y., Klug, M. G., Soonpaa, M. H., & Field, L. J. (1993). Differentiation and long-term survival of c2c12 myoblast grafts in heart. Journal of Clinical Investigation, 92(3), 1548–1554.

    PubMed  CAS  Google Scholar 

  63. Chiu, R. C., Zibaitis, A., & Kao, R. L. (1995). Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Annals of Thoracic Surgery, 60(1), 12–18.

    PubMed  CAS  Google Scholar 

  64. Van Meter, C. H., Jr., Claycomb, W. C., Delcarpio, J. B., Smith, D. M., deGruiter, H., Smart, F. (1995). Myoblast transplantation in the porcine model: A potential technique for myocardial repair. Journal of Thoracic and Cardiovascular Surgery, 110(5), 1442–1448.

    PubMed  Google Scholar 

  65. Yoon, P. D., Kao, R. L., & Magovern, G. J. (1995). Myocardial regeneration. Transplanting satellite cells into damaged myocardium. Texas Heart Institute Journal, 22(2), 119–125.

    PubMed  CAS  Google Scholar 

  66. Atkins, B. Z., Lewis, C. W., Kraus, W. E., Hutcheson, K. A., Glower, D. D., & Taylor, D. A. (1999). Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Annals of Thoracic Surgery, 67(1), 124–129.

    PubMed  CAS  Google Scholar 

  67. Murtuza, B., Suzuki, K., Bou-Gharios, G., Beauchamp, J. R., Smolenski, R. T., Partridge, T. A., et al. (2004). Transplantation of skeletal myoblasts secreting an il-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4216–4221.

    PubMed  CAS  Google Scholar 

  68. Niagara, M. I., Haider, H., Jiang, S., & Ashraf, M. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100(4), 545–555.

    PubMed  CAS  Google Scholar 

  69. Agbulut, O., Menot, M. L., Li, Z., Marotte, F., Paulin, D., Hagege, A. A., et al. (2003). Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy. Cardiovascular Research, 58(2), 451–459.

    PubMed  CAS  Google Scholar 

  70. Oshima, H., Payne, T. R., Urish, K. L., Sakai, T., Ling, Y., Gharaibeh, B., et al. (2005). Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Molecular Therapy, 12(6), 1130–1141.

    PubMed  CAS  Google Scholar 

  71. Reinecke, H., Minami, E., Poppa, V., & Murry, C. E. (2004). Evidence for fusion between cardiac and skeletal muscle cells. Circulation Research, 94(6), e56–e60.

    PubMed  CAS  Google Scholar 

  72. Roell, W., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824.

    PubMed  CAS  Google Scholar 

  73. Rubart, M., Soonpaa, M. H., Nakajima, H., & Field, L. J. (2004). Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. Journal of Clinical Investigation, 114(6), 775–783.

    PubMed  CAS  Google Scholar 

  74. Khan, M., Kutala, V. K., Vikram, D. S., Wisel, S., Chacko, S. M., Kuppusamy, M. L., et al. (2007). Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. American Journal of Physiology. Heart and Circulatory Physiology, 293(4), H2129–H2139.

    CAS  Google Scholar 

  75. Azarnoush, K., Maurel, A., Sebbah, L., Carrion, C., Bissery, A., Mandet, C., et al. (2005). Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. Journal of Thoracic and Cardiovascular Surgery, 130(1), 173–179.

    PubMed  CAS  Google Scholar 

  76. Bonaros, N., Rauf, R., Werner, E., Schlechta, B., Rohde, E., Kocher, A., et al. (2007). Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interactive Cardiovascular Thoracic Surgery (In press).

  77. Bonaros, N., Rauf, R., Wolf, D., Margreiter, E., Tzankov, A., Schlechta, B., et al. (2006). Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 132(6), 1321–1328.

    PubMed  Google Scholar 

  78. Guarita-Souza, L. C., Carvalho, K. A., Rebelatto, C., Senegaglia, A., Hansen, P., & Furuta, M., (2005). Cell transplantation: Differential effects of myoblasts and mesenchymal stem cells. International Journal of Cardiology 111, 423–429.

    PubMed  Google Scholar 

  79. Guarita-Souza, L. C., Carvalho, K. A., Woitowicz, V., Rebelatto, C., Senegaglia, A., Hansen, P., et al. (2006). Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of chagas disease. Circulation, 114(1), I120–I124.

    PubMed  CAS  Google Scholar 

  80. Jain, M., DerSimonian, H., Brenner, D. A., Ngoy, S., Teller, P., Edge, A. S., et al. (2001). Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation, 103(14), 1920–1927.

    PubMed  CAS  Google Scholar 

  81. Reinecke, H., Poppa, V., & Murry, C. E. (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. Journal of Molecular and Cellular Cardiology, 34(2), 241–249.

    PubMed  CAS  Google Scholar 

  82. Al Attar, N., Carrion, C., Ghostine, S., Garcin, I., Vilquin, J. T., Hagege, A. A., et al. (2003). Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovascular Research, 58(1), 142–148.

    PubMed  Google Scholar 

  83. Tambara, K., Premaratne, G. U., Sakaguchi, G., Kanemitsu, N., Lin, X., Nakajima, H., et al. (2005). Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation, 112(9 Suppl), I129–I134.

    PubMed  Google Scholar 

  84. Tambara, K., Sakakibara, Y., Sakaguchi, G., Lu, F., Premaratne, G. U., Lin, X., et al. (2003). Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation, 108(Suppl 1), II259–II263.

    PubMed  Google Scholar 

  85. Ott, H. C., Bonaros, N., Marksteiner, R., Wolf, D., Margreiter, E., Schachner, T., et al. (2004). Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. European Journal of Cardio-Thoracic Surgery, 25(4), 627–634.

    PubMed  CAS  Google Scholar 

  86. Ott, H. C., Kroess, R., Bonaros, N., Marksteiner, R., Margreiter, E., Schachner, T., et al. (2005). Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. European Journal of Cardio-Thoracic Surgery, 27(6), 1017–1021.

    PubMed  Google Scholar 

  87. Siepe, M., Giraud, M. N., Liljensten, E., Nydegger, U., Menasche, P., Carrel, T., et al. (2007). Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artificial Organs, 31(6), 425–433.

    PubMed  CAS  Google Scholar 

  88. Siepe, M., Giraud, M. N., Pavlovic, M., Receputo, C., Beyersdorf, F., Menasche, P., et al. (2006). Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. Journal of Thoracic and Cardiovascular Surgery, 132(1), 124–131.

    PubMed  Google Scholar 

  89. Chanseaume, S., Azarnoush, K., Maurel, A., Bellamy, V., Peyrard, S., Bruneval, P., et al. (2007). Can erythropoietin improve skeletal myoblast engraftment in infarcted myocardium? Interactive Cardiovascular Thoracic Surgery, 6(3), 293–297.

    Google Scholar 

  90. Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.

    PubMed  CAS  Google Scholar 

  91. Memon, I. A., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Taketani, S., et al. (2005). Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1333–1341.

    PubMed  Google Scholar 

  92. Kondoh, H., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Kitagawa-Sakakida, S., et al. (2007). Combined strategy using myoblasts and hepatocyte growth factor in dilated cardiomyopathic hamsters. Annals of Thoracic Surgery, 84(1), 134–141.

    PubMed  Google Scholar 

  93. Ohno, N., Fedak, P. W., Weisel, R. D., Mickle, D. A., Fujii, T., & Li, R. K. (2003). Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: Effects on left ventricular geometry and function. Journal of Thoracic and Cardiovascular Surgery, 126(5), 1537–1548.

    PubMed  Google Scholar 

  94. Pouly, J., Hagege, A. A., Vilquin, J. T., Bissery, A., Rouche, A., Bruneval, P., et al. (2004). Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation, 110(12), 1626–1631.

    PubMed  Google Scholar 

  95. He, K. L., Yi, G. H., Sherman, W., Zhou, H., Zhang, G. P., Gu, A., et al. (2005). Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs. Journal of Heart and Lung Transplantation, 24(11), 1940–1949.

    PubMed  Google Scholar 

  96. Memon, I. A., Sawa, Y., Miyagawa, S., Taketani, S., & Matsuda, H. (2005). Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 130(3), 646–653.

    PubMed  Google Scholar 

  97. Dib, N., Diethrich, E. B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al. (2002). Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. Journal of Endovascular Surgery, 9(3), 313–319.

    Google Scholar 

  98. Kim, B. O., Tian, H., Prasongsukarn, K., Wu, J., Angoulvant, D., Wnendt, S., et al. (2005). Cell transplantation improves ventricular function after a myocardial infarction: A preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation, 112(9 Suppl), I96–I104.

    PubMed  Google Scholar 

  99. Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71(4), 744–753.

    PubMed  CAS  Google Scholar 

  100. Chachques, J. C., Cattadori, B., Herreros, J., Prosper, F., Trainini, J. C., Blanchard, D., et al. (2002). Treatment of heart failure with autologous skeletal myoblasts. Herz, 27(7), 570–578.

    PubMed  Google Scholar 

  101. Chachques, J. C., Duarte, F., Cattadori, B., Shafy, A., Lila, N., Chatellier, G., et al. (2004). Carpentier, Angiogenic growth factors and/or cellular therapy for myocardial regeneration: A comparative study. Journal of Thoracic and Cardiovascular Surgery, 128(2), 245–253.

    PubMed  CAS  Google Scholar 

  102. Ghostine, S., Carrion, C., Souza, L. C., Richard, P., Bruneval, P., Vilquin, J. T., et al. (2002). Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation, 106(12 Suppl 1), I131–I136.

    PubMed  Google Scholar 

  103. McConnell, P. I., del Rio, C. L., Jacoby, D. B., Pavlicova, M., Kwiatkowski, P., Zawadzka, A., et al. (2005). Correlation of autologous skeletal myoblast survival with changes in left ventricular remodeling in dilated ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 130(4), 1001.

    PubMed  Google Scholar 

  104. Brasselet, C., Morichetti, M. C., Messas, E., Carrion, C., Bissery, A., Bruneval, P., et al. (2005). Skeletal myoblast transplantation through a catheter-based coronary sinus approach: An effective means of improving function of infarcted myocardium. European Heart Journal, 26(15), 1551–1556.

    PubMed  Google Scholar 

  105. Dib, N., et al. (2005). Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: Four-year follow-up. Circulation, 112(12), 1748–1755.

    PubMed  Google Scholar 

  106. Hagege, A. A., Carrion, C., Menasche, P., Vilquin, J. T., Duboc, D., & Marolleau, J. P. (2003). Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet, 361(9356), 491–492.

    PubMed  Google Scholar 

  107. Hagege, A. A., Marolleau, J. P., Vilquin, J. T., Alheritiere, A., Peyrard, S., Duboc, D., et al. (2006). Skeletal myoblast transplantation in ischemic heart failure: Long-term follow-up of the first phase i cohort of patients. Circulation, 114(1 Suppl), I108–I113.

    PubMed  Google Scholar 

  108. Menasche, P., Hagege, A. A., Vilquin, J. T., Desnos, M., Abergel, E., Pouzet, B., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41(7), 1078–1083.

    PubMed  Google Scholar 

  109. Pagani, F. D., DerSimonian, H., Zawadzka, A., Wetzel, K., Edge, A. S., Jacoby, D. B., et al. (2003). Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology, 41(5), 879–888.

    PubMed  Google Scholar 

  110. Siminiak, T., Fiszer, D., Jerzykowska, O., Grygielska, B., Rozwadowska, N., Kalmucki, P., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: The poznan trial. European Heart Journal, 26(12), 1188–1195.

    PubMed  Google Scholar 

  111. Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: Clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42(12), 2063–2069.

    PubMed  Google Scholar 

  112. Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131(4), 799–804.

    PubMed  Google Scholar 

  113. Herreros, J., Prosper, F., Perez, A., Gavira, J. J., Garcia-Velloso, M. J., Barba, J., et al. (2003). Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 24(22), 2012–2020.

    PubMed  Google Scholar 

  114. Smits, P. C., Nienaber, C., Colombo, A., Ince, H., Carlino, M., Theuns, D. A. M. J., et al. (2006). Myocardial repair by percutaneous cell transplantation of autologous skeletal myoblast as a stand alone procedure in post myocardial infarction chronic heart failure patients. EuroIntervention, 1, 417–424.

    PubMed  Google Scholar 

  115. Chachques, J. C., Herreros, J., Trainini, J., Juffe, A., Rendal, E., Prosper, F., et al. (2004). Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. International journal of Cardiology, 95(Suppl 1), S29–S33.

    PubMed  Google Scholar 

  116. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., et al. (2003). Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425(6961), 968–973.

    PubMed  CAS  Google Scholar 

  117. Menasche, P. (2007). Myoblast autologous grafting in ischemic cardiomyopathy (magic) trial. Clinical Cardiology, 30(2), 98.

    Google Scholar 

  118. Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (topcare-ami). Circulation, 106(24), 3009–3017.

    PubMed  Google Scholar 

  119. Dobert, N., Britten, M., Assmus, B., Berner, U., Menzel, C., Lehmann, R., et al. (2004). Transplantation of progenitor cells after reperfused acute myocardial infarction: Evaluation of perfusion and myocardial viability with fdg-pet and thallium spect. European Journal of Nuclear Medicine and Molecular Imaging, 31(8), 1146–1151.

    PubMed  Google Scholar 

  120. Engelmann, M. G., Theiss, H. D., Hennig-Theiss, C., Huber, A., Wintersperger, B. J., Werle-Ruedinger, A. E., et al. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute st-segment elevation myocardial infarction undergoing late revascularization: Final results from the g-csf-stemi (granulocyte colony-stimulating factor st-segment elevation myocardial infarction) trial. Journal of the American College of Cardiology, 48(8), 1712–1721.

    PubMed  CAS  Google Scholar 

  121. Perin, E. C., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.

    PubMed  Google Scholar 

  122. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1), II213–II218.

    PubMed  Google Scholar 

  123. Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., et al. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361(9351), 45–46.

    PubMed  Google Scholar 

  124. Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.

    PubMed  Google Scholar 

  125. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The boost randomised controlled clinical trial. Lancet, 364(9429), 141–148.

    PubMed  Google Scholar 

  126. Zohlnhofer, D., Ott, I., Mehilli, J., Schomig, K., Michalk, F., Ibrahim, T., et al. (2006). Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: A randomized controlled trial. JAMA, 295(9), 1003–1010.

    PubMed  Google Scholar 

  127. Ausoni, S., Zaglia, T., Dedja, A., Di Lisi, R., Seveso, M., Ancona, E. (2005). Host-derived circulating cells do not significantly contribute to cardiac regeneration in heterotopic rat heart transplants. Cardiovascular Research, 68(3), 394–404.

    PubMed  CAS  Google Scholar 

  128. Matsuura, K., Wada, H., Nagai, T., Iijima, Y., Minamino, T., & Sano, M. (2004). Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 167(2), 351–363.

    PubMed  CAS  Google Scholar 

  129. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., & Goodell, M. A. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1341–1346.

  130. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668.

    PubMed  CAS  Google Scholar 

  131. Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Natural Medicines, 10(5), 494–501.

    CAS  Google Scholar 

  132. Wagers, A. J., Sherwood, R. I. Christensen, J. L., & Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297(5590), 2256–2259.

    PubMed  CAS  Google Scholar 

  133. Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639–648.

    PubMed  CAS  Google Scholar 

  134. Okada, T. S., Yasuda, K., Kondoh, H., Nomura, K., Takagi, S., & Okuyama, K. (1982). Transdetermination and transdifferentiation of neural retinal cells into lens in cell culture. Progress in Clinical and Biological Research, 85(Pt A), 249–255.

    PubMed  CAS  Google Scholar 

  135. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283(5401)534–537.

    PubMed  CAS  Google Scholar 

  136. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356), 1528–1530.

    PubMed  CAS  Google Scholar 

  137. Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A., & Goodell, M. A. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Natural Medicines, 9(12), 1520–1527.

    CAS  Google Scholar 

  138. Corbel, S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Natural Medicines, 9(12), 1528–1532.

    CAS  Google Scholar 

  139. Jackson, K. A., Mi, T., & Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 96(25), 14482–14486.

    PubMed  CAS  Google Scholar 

  140. Kotton, D. N., Ma, B. Y., Cardoso, W. V., Sanderson, E. A., Summer, R. S., Williams, M. C., et al. (2001). Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development, 128(24), 5181–5188.

    PubMed  CAS  Google Scholar 

  141. Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3), 369–377.

    PubMed  CAS  Google Scholar 

  142. Yamada, M., Kubo, H., Kobayashi, S., Ishizawa, K., Numasaki, M., & Ueda, S. (2004). Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. Journal of Immunology, 172(2), 1266–1272.

    CAS  Google Scholar 

  143. Spees, J. L., Whitney, M. J., Sullivan, D. E., Lasky, J. A., Laboy, M., Ylostalo, J., and Prockop, D. J. (2007). Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J, DOI 10.1096/fj.07-8076com.

  144. Brazelton, T. R., Rossi, F. M., Keshet, G. I., & Blau, H. M. (2000). From marrow to brain: Expression of neuronal phenotypes in adult mice. Science, 290(5497), 1775–1779.

    PubMed  CAS  Google Scholar 

  145. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290(5497), 1779–1782.

    PubMed  CAS  Google Scholar 

  146. Cogle, C. R., Yachnis, A. T., Laywell, E. D., Zander, D. S., Wingard, J. R., Steindler, D. A., et al. (2004). Bone marrow transdifferentiation in brain after transplantation: A retrospective study. Lancet, 363(9419), 1432–1437.

    PubMed  CAS  Google Scholar 

  147. Kohyama, J., Abe, H., Shimazaki, T., Koizumi, A., Nakashima, K., Gojo, S., et al. (2001). Brain from bone: Efficient “Meta-differentiation” Of marrow stroma-derived mature osteoblasts to neurons with noggin or a demethylating agent. Differentiation, 68(4–5), 235–244.

    PubMed  CAS  Google Scholar 

  148. Galli, R., Borello, U., Gritti, A., Minasi, M. G., Bjornson, C., Coletta, M., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nature Neuroscience, 3(10), 986–991.

    PubMed  CAS  Google Scholar 

  149. Theise, N. D., Badve, S., Saxena, R., Henegariu, O., Sell, S., Crawford, J. M., et al. (2000). Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 31(1), 235–240.

    PubMed  CAS  Google Scholar 

  150. Theise, N. D., Nimmakayalu, M., Gardner, R., Illei, P. B., Morgan, G., Teperman, L., et al. (2000). Liver from bone marrow in humans. Hepatology, 32(1), 11–16.

    PubMed  CAS  Google Scholar 

  151. Palapattu, G. S., Meeker, A., Harris, T., Collector, M. I., Sharkis, S. J., DeMarzo, A. M., et al. (2006). Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium. Journal of Urology, 176(2), 813–818.

    PubMed  Google Scholar 

  152. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J. Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107(11), 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  153. Vassilopoulos, G., Wang, P. R., & Russell, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature, 422(6934), 901–904.

    PubMed  CAS  Google Scholar 

  154. Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., et al. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 422(6934), 897–901.

    PubMed  CAS  Google Scholar 

  155. Morshead, C. M., Benveniste, P., Iscove, N. N., & van der Kooy, D. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Natural Medicines, 8(3), 268–273.

    CAS  Google Scholar 

  156. Kotton, D.N., Fabian, A. J., & Mulligan, R. C. (2005). Failure of bone marrow to reconstitute lung epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 328–334.

    PubMed  CAS  Google Scholar 

  157. Chang, J. C., Summer, R., Sun, X., Fitzsimmons, K., & Fine, A. (2005). Evidence that bone marrow cells do not contribute to the alveolar epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 335–342.

    PubMed  CAS  Google Scholar 

  158. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al.(2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.

    PubMed  CAS  Google Scholar 

  159. Janssens, S., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with st-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.

    PubMed  Google Scholar 

  160. Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled boost (bone marrow transfer to enhance st-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.

    PubMed  Google Scholar 

  161. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    PubMed  CAS  Google Scholar 

  162. Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the atp-binding cassette transporter, abcg2, identifies cardiac sp cells in the developing and adult heart. Developments in Biologicals, 265(1), 262–275.

    CAS  Google Scholar 

  163. Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., et al. (2005). Cd31- but not cd31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97(1), 52–61.

    PubMed  CAS  Google Scholar 

  164. Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.

    PubMed  CAS  Google Scholar 

  165. Dawn, B., Stein, A. B., Urbanek, K., Rota, M., Whang, B., Rastaldo, R., et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3766–3771.

    PubMed  CAS  Google Scholar 

  166. Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279(12), 11384–11391.

    PubMed  CAS  Google Scholar 

  167. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell, 5(6), 877–889.

    PubMed  CAS  Google Scholar 

  168. Sun, Y., Liang, X., Najafi, N., Cass, M., Lin, L., Cai, C. L., et al. (2007). Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Developments in Biologicals, 304(1), 286–296.

    CAS  Google Scholar 

  169. Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., et al. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 113(7), 1005–1014.

    PubMed  Google Scholar 

  170. Swijnenburg, R. J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–I172.

    PubMed  Google Scholar 

  171. Passier, R., Oostwaard, D. W., Snapper, J., Kloots, J., Hassink, R. J., Kuijk, E., et al. (2005). Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23(6), 772–780.

    PubMed  CAS  Google Scholar 

  172. Zandstra, P. W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., et al. (2003). Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Engineering, 9(4), 767–778.

    PubMed  CAS  Google Scholar 

  173. Lanza, R. P., Chung, H. Y., Yoo, J. J., Wettstein, P. J., Blackwell, C., Borson, N., et al. (2002). Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnology, 20(7), 689–696.

    PubMed  CAS  Google Scholar 

  174. Newell, K. A., Larsen, C. P., & Kirk, A. D. (2006). Transplant tolerance: Converging on a moving target. Transplantation, 81(1), 1–6.

    PubMed  Google Scholar 

  175. Rubart, M., & Field, L. J. (2007). Es cells for troubled hearts. Nature Biotechnology, 25(9), 993–994.

    PubMed  CAS  Google Scholar 

  176. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

    PubMed  CAS  Google Scholar 

  177. Pasumarthi, K. B., & Field, L. J. (2002). Cardiomyocyte enrichment in differentiating es cell cultures: Strategies and applications. Methods in Molecular Biology, 185, 157–168.

    PubMed  CAS  Google Scholar 

  178. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21(7), 1345–1357.

    PubMed  CAS  Google Scholar 

  179. Deacon, T., Dinsmore, J., Costantini, L. C., Ratliff, J., & Isacson, O. (1998). Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Experimental Neurology, 149(1), 28–41.

    PubMed  CAS  Google Scholar 

  180. Henning, R. J., Abu-Ali, H., Balis, J. U., Morgan, M. B., Willing, A. E., & Sanberg, P. R. (2004). Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant, 13(7–8), 729–739.

    PubMed  Google Scholar 

  181. Ma, N., Stamm, C., Kaminski, A., Li, W., Kleine, H. D., Muller-Hilke, B., et al. (2005). Human cord blood cells induce angiogenesis following myocardial infarction in nod/scid-mice. Cardiovascular Research, 66(1), 45–54.

    PubMed  CAS  Google Scholar 

  182. Koller, M. R., Manchel, I., Maher, R. J., Goltry, K. L., Armstrong, R. D., & Smith, A. K. (1998). Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant, 21(7), 653–663.

    PubMed  CAS  Google Scholar 

  183. Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnology, 18(6), 675–679.

    PubMed  CAS  Google Scholar 

  184. Agbulut, O., Coirault, C., Niederlander, N., Huet, A., Vicart, P., Hagege, A., et al. (2006). Gfp expression in muscle cells impairs actin–myosin interactions: Implications for cell therapy. Nature Methods, 3(5), 331.

    PubMed  CAS  Google Scholar 

  185. Niagara, M. I., Haider, H., Ye, L., Koh, V. S., Lim, Y. T., Poh, K. K., et al. (2004). Autologous skeletal myoblasts transduced with a new adenoviral bicistronic vector for treatment of hind limb ischemia. Journal of Vascular Surgery, 40(4), 774–785.

    Google Scholar 

  186. Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), II219–II224.

    PubMed  Google Scholar 

  187. Suzuki, K., Murtuza, B., Beauchamp, J. R., Smolenski, R. T., Varela-Carver, A., Fukushima, S., et al. (2004). Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB Journal, 18(10)1153–1155.

    PubMed  CAS  Google Scholar 

  188. Xu, H. X., Li, G. S., Jiang, H., Wang, J., Lu, J. J., Jiang, W., et al. (2004). Implantation of bm cells transfected with phvegf165 enhances functional improvement of the infarcted heart. Cytotherapy, 6(3), 204–211.

    PubMed  Google Scholar 

  189. Yau, T. M., Kim, C., Li, G., Zhang, Y., Weisel, R. D., & Li, R. K. (2005). Maximizing ventricular function with multimodal cell-based gene therapy. Circulation, 112(9 Suppl), I123–I128.

    PubMed  Google Scholar 

  190. Barbero, A., Benelli, R., Minghelli, S., Tosetti, F., Dorcaratto, A., Ponzetto, C., et al. (2001). Growth factor supplemented matrigel improves ectopic skeletal muscle formation—a cell therapy approach. Journal of Cellular Physiology, 186(2), 183–192.

    PubMed  CAS  Google Scholar 

  191. Christman, K. L., Fang, Q., Yee, M. S., Johnson, K. R., Sievers, R. E., & Lee, R. J. (2005). Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials, 26(10), 1139–1144.

    PubMed  CAS  Google Scholar 

  192. Kawamoto, A., Murayama, T., Kusano, K., Ii, M., Tkebuchava, T., Shintani, S., et al. (2004). Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation, 110(11), 1398–1405.

    PubMed  CAS  Google Scholar 

  193. Kofidis, T., de Bruin, J. L., Yamane, T., Tanaka, M., Lebl, D. R., Swijnenburg, R. J., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111(19), 2486–2493.

    PubMed  CAS  Google Scholar 

  194. Kofidis, T., Lebl, D. R., Martinez, E. C., Hoyt, G., Tanaka, M., & Robbins, R. C. (2005). Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 112(9 Suppl), I173–I177.

    PubMed  Google Scholar 

  195. Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 Suppl), I135–I143.

    PubMed  Google Scholar 

  196. Conconi, M. T., De Coppi, P., Bellini, S., Zara, G., Sabatti, M., Marzaro, M., et al. (2005). Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials, 26(15), 2567–2574.

    PubMed  CAS  Google Scholar 

  197. Hill, E., Boontheekul, T., & Mooney, D. J. (2006). Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Engineering, 12(5), 1295–1303.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Dinsmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinsmore, J.H., Dib, N. Stem Cells and Cardiac Repair: A Critical Analysis. J. of Cardiovasc. Trans. Res. 1, 41–54 (2008). https://doi.org/10.1007/s12265-007-9008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-007-9008-7

Keywords

Navigation