Skip to main content

Advertisement

Log in

Getting to the Heart of Tissue Engineering

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular disease affects 80 million people in the USA and is the leading cause of death. Significant limitations of current treatments necessitate the development of novel strategies. Cardiovascular tissue engineering is an emerging field focused on the development of biological substitutes to restore, maintain, or improve tissue function. In this article, we present an overview of trends in the field and scientific milestones achieved during the last decade. Various 3D bioengineered models of functional cardiovascular structures, including cell-based cardiac pumps, ventricles, patches, vessels, and valves, are described. We discuss critical technological hurdles that must be addressed for continued progress and an outlook for the future of cardiovascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Larsen, W. J. (1997). Human embryology. London: Churchill Livingstone.

    Google Scholar 

  2. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926 (review, 71 refs).

    PubMed  CAS  Google Scholar 

  3. Chapekar, M. S. (2000). Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research, 53, 617–620 (review, 41 refs).

    PubMed  CAS  Google Scholar 

  4. Lysaght, M. J., & Reyes, J. (2001). The growth of tissue engineering. Tissue Engineering, 7, 485–493 (review, 17 refs).

    PubMed  CAS  Google Scholar 

  5. Fuchs, J. R., Nasseri, B. A., & Vacanti, J. P. (2001). Tissue engineering: A 21st century solution to surgical reconstruction. Annals of Thoracic Surgery, 72, 577–591 (review, 99 refs).

    PubMed  CAS  Google Scholar 

  6. Nerem, R. M. (2006). Tissue engineering: The hope, the hype, and the future. Tissue Engineering, 12(5), 1143–1150 (review, 45 refs).

    PubMed  CAS  Google Scholar 

  7. Vacanti, C. A. (2006). History of tissue engineering and a glimpse into its future. Tissue Engineering, 12(5), 1137–1142 (review, 8 refs).

    PubMed  Google Scholar 

  8. Shieh, S. J., & Vacanti, J. P. (2005). State-of-the-art tissue engineering: From tissue engineering to organ building. Surgery, 137(1), 1–7 (review, 28 refs).

    PubMed  Google Scholar 

  9. Lavik, E., & Langer, R. (2004). Tissue engineering: Current state and perspectives. Applied Microbiology & Biotechnology, 65(1), 1–8 (review, 117 refs).

    CAS  Google Scholar 

  10. 2007. Ref Type: Internet Communication.

  11. Cleland, J. G., Khand, A., & Clark, A. (2001). The heart failure epidemic: Exactly how big is it? [letter; comment.]. European Heart Journal, 22, 623–626 (review, 21 refs).

    PubMed  CAS  Google Scholar 

  12. Goldstein, S. (2001). Heart failure therapy at the turn of the century. Heart Failure Reviews, 6, 7–14 (review, 53 refs).

    PubMed  CAS  Google Scholar 

  13. Miniati, D. N., & Robbins, R. C. (2002). Heart transplantation: A thirty-year perspective. Annual Review of Medicine, 53, 189–205 (review, 74 refs).

    PubMed  CAS  Google Scholar 

  14. Stevenson, L. W., & Kormos, R. L. (2001). Mechanical cardiac support 2000: Current applications and future trial design. Journal of Heart & Lung Transplantation, 20, 1–38 (review, 111 refs).

    CAS  Google Scholar 

  15. Laflamme, M. A., & Murry, C. E. (2005). Regenerating the heart. Nature Biotechnology, 23(7), 845–856 (review, 135 refs).

    PubMed  CAS  Google Scholar 

  16. Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183 (review, 101 refs).

    PubMed  Google Scholar 

  17. Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps: Observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47(9), 1777–1785. (review, 104 refs).

    PubMed  Google Scholar 

  18. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20 (review, 98 refs).

    PubMed  CAS  Google Scholar 

  19. Sachinidis, A., Fleischmann, B. K., Kolossov, E., Wartenberg, M., Sauer, H., & Hescheler, J. (2003). Cardiac specific differentiation of mouse embryonic stem cells. Cardiovascular Research, 58(2), 278–291 (review, 115 refs).

    PubMed  CAS  Google Scholar 

  20. Christman, K. L., & Lee, R. J. (2006). Biomaterials for the treatment of myocardial infarction. Journal of the American College of Cardiology, 48(5), 907–913 (review, 63 refs).

    PubMed  CAS  Google Scholar 

  21. Davis, M. E., Hsieh, P. C., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15 (review, 62 refs).

    PubMed  CAS  Google Scholar 

  22. Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., & Barfbarisi, A. (2005). Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 203, 465–470 (review, 61 refs).

    PubMed  CAS  Google Scholar 

  23. Portner, R., Nagel-Heyer, S., Goepfert, C., Adamietz, P., & Meenen, N. M. (2005). Bioreactor design for tissue engineering. Journal of Bioscience & Bioengineering, 100(3), 235–245 (review, 76 refs).

    Google Scholar 

  24. Akins, R. E. (2002). Can tissue engineering mend broken hearts? Circulation Research, 90, 120–122 (letter; comment).

    PubMed  CAS  Google Scholar 

  25. Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999). Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology & Bioengineering, 64, 580–589.

    CAS  Google Scholar 

  26. Shimizu, T., Yamato, M., Kikuchi, A., & Okano, T. (2001). Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Engineering, 7, 141–151.

    PubMed  CAS  Google Scholar 

  27. Papadaki, M., Bursac, N., Langer, R., Merok, J., Vunjak-Novakovic, G., & Freed, L. E. (2001). Tissue engineering of functional cardiac muscle: Molecular, structural, and electrophysiological studies. American Journal of Physiology—Heart & Circulatory Physiology, 280, H168-H178.

    CAS  Google Scholar 

  28. Bursac, N., Papadaki, M., Cohen, R. J., Schoen, F. J., Eisenberg, S. R., Carrier, R., et al. (1999). Cardiac muscle tissue engineering: Toward an in vitro model for electrophysiological studies. American Journal of Physiology, 277, t-44.

    Google Scholar 

  29. Shimizu, T., Yamato, M., Akutsu, T., Shibata, T., Isoi, Y., Kikuchi, A., et al. (2002). Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. Journal of Biomedical Materials Research, 60, 110–117.

    PubMed  CAS  Google Scholar 

  30. Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J. F., et al. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90, 223–230 (see comments).

    PubMed  CAS  Google Scholar 

  31. Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., et al. (2002). Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation Research, 90, e40.

    PubMed  CAS  Google Scholar 

  32. Akins, R. E., Boyce, R. A., Madonna, M. L., Schroedl, N. A., Gonda, S. R., McLaughlin, T. A., et al. (1999). Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Engineering, 5, 103–118.

    PubMed  CAS  Google Scholar 

  33. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation, 102(Suppl-61), III56–61.

    PubMed  CAS  Google Scholar 

  34. Li, R. K., Yau, T. M., Weisel, R. D., Mickle, D. A., Sakai, T., Choi, A., et al. (2000). Construction of a bioengineered cardiac graft. Journal of Thoracic & Cardiovascular Surgery, 119, 368–375.

    CAS  Google Scholar 

  35. Zimmermann, W. H., & Eschenhagen, T. (2003). Cardiac tissue engineering for replacement therapy. Heart Failure Reviews, 8, 259–269 (review, 79 refs).

    PubMed  CAS  Google Scholar 

  36. Eschenhagen, T., Didie, M., Munzel, F., Schubert, P., Schneiderbanger, K., & Zimmermann, W. H. (2002). 3D engineered heart tissue for replacement therapy. Basic Research in Cardiology, 97(Suppl-52), 1146–1152.

    Google Scholar 

  37. Zimmermann, W. H., Didie, M., Wasmeier, G. H., Nixdorff, U., Hess, A., Melnychenko, I., et al. (2002). Cardiac grafting of engineered heart tissue in syngenic rats. Circulation, 106(Suppl-7), I151–157.

    PubMed  Google Scholar 

  38. Eschenhagen, T., Didie, M., Heubach, J., Ravens, U., & Zimmermann, W. H. (2002). Cardiac tissue engineering. Transplant Immunology, 9, 315–321 (review, 21 refs).

    PubMed  CAS  Google Scholar 

  39. Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., et al. (2002). In vitro engineering of heart muscle: Artificial myocardial tissue. Journal of Thoracic & Cardiovascular Surgery, 124, 63–69.

    CAS  Google Scholar 

  40. Zimmermann, W. H., Fink, C., Kralisch, D., Remmers, U., Weil, J., & Eschenhagen, T. (2000). Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnology & Bioengineering, 68, 106–114.

    CAS  Google Scholar 

  41. Eschenhagen, T., Fink, C., Remmers, U., Scholz, H., Wattchow, J., Weil, J., et al. (1997). Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB Journal, 11, 683–694.

    PubMed  CAS  Google Scholar 

  42. Shimizu, T., Yamato, M., Kikuchi, A., & Okano, T. (2003). Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24, 2309–2316 (review, 38 refs).

    PubMed  CAS  Google Scholar 

  43. Fedak, P. W., Weisel, R. D., Verma, S., Mickle, D. A., & Li, R. K. (2003). Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Seminars in Thoracic & Cardiovascular Surgery, 15, 277–286 (review, 78 refs).

    Google Scholar 

  44. Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Wong, H., Ozawa, S., et al. (2002). Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats [see comment]. Journal of Thoracic & Cardiovascular Surgery, 124, 1157–1164.

    Google Scholar 

  45. Papadaki, M. (2003). Cardiac muscle tissue engineering. IEEE Engineering in Medicine & Biology Magazine, 22, 153–154 (review, 13 refs).

    Google Scholar 

  46. Dar, A., Shachar, M., Leor, J., & Cohen, S. (2002). Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnology & Bioengineering, 80, 305–312.

    CAS  Google Scholar 

  47. Kofidis, T., Akhyari, P., Wachsmann, B., Boublik, J., Mueller-Stahl, K., Leyh, R., et al. (2002). A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. European Journal of Cardio-Thoracic Surgery, 22, 238–243.

    PubMed  Google Scholar 

  48. van Luyn, M. J., Tio, R. A., van Seijen, X. J., Plantinga, J. A., de Leij, L. F., DeJongste, M. J., et al. (2002). Cardiac tissue engineering: Characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials, 23, 4793–4801.

    PubMed  Google Scholar 

  49. Morritt, A. N., Bortolotto, S. K., Dilley, R. J., Han, X., Kompa, A. R., McCombe, D., et al. (2007). Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 115(3), 353–360.

    PubMed  Google Scholar 

  50. Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., et al. (2006). Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Engineering, 12(8), 2077–2091.

    PubMed  CAS  Google Scholar 

  51. Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology Animal, 41(7), 188–196, (Aug).

    CAS  Google Scholar 

  52. Alperin, C., Zandstra, P. W., & Woodhouse, K. A. (2005). Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials, 26(35), 7377–7386.

    PubMed  CAS  Google Scholar 

  53. Zammaretti, P., & Jaconi, M. (2004). Cardiac tissue engineering: Regeneration of the wounded heart. Current Opinion in Biotechnology, 15(5), 430–434 (review, 66 refs).

    PubMed  CAS  Google Scholar 

  54. Naito, H., Takewa, Y., Mizuno, T., Ohya, S., Nakayama, Y., Tatsumi, E., et al. (2004). Three-dimensional cardiac tissue engineering using a thermoresponsive artificial extracellular matrix. ASAIO Journal, 50(4), 344–834 (Aug).

    PubMed  CAS  Google Scholar 

  55. Ye, Q., Zund, G., Benedikt, P., Jockenhoevel, S., Hoerstrup, S. P., Sakyama, S., et al. (2000). Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 17(5), 587–591.

    PubMed  CAS  Google Scholar 

  56. Boublik, J., Park, H., Radisic, M., Tognana, E., Chen, F., Pei, M., et al. (2005). Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Engineering, 11(7–8), 1122–1132 (Aug).

    PubMed  CAS  Google Scholar 

  57. Zimmermann, W. H., Didie, M., Doker, S., Melnychenko, I., Naito, H., Rogge, C., et al. (2006). Heart muscle engineering: An update on cardiac muscle replacement therapy. Cardiovascular Research, 71, 419–429. (review, 102 refs).

    PubMed  CAS  Google Scholar 

  58. Naito, H., Melnychenko, I., Didie, M., Schneiderbanger, K., Schubert, P., Rosenkranz, S., et al. (2006). Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation, 114(Suppl-8), I-72–I-78.

    Google Scholar 

  59. Zimmermann, W. H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12, 452–458.

    PubMed  CAS  Google Scholar 

  60. Eschenhagen, T., Zimmermann, W. H., & Kleber, A. G. (2006). Electrical coupling of cardiac myocyte cell sheets to the heart.[comment]. Circulation Research, 98, 573–575.

    PubMed  CAS  Google Scholar 

  61. Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., et al. (2006). Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Engineering, 12, 2077–2091.

    PubMed  CAS  Google Scholar 

  62. Boublik, J., Park, H., Radisic, M., Tognana, E., Chen, F., Pei, M., et al. (2005). Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Engineering, 11, 1122–1132.

    PubMed  CAS  Google Scholar 

  63. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101, 18129–18134.

    PubMed  CAS  Google Scholar 

  64. Okano, T., Yamada, N., Sakai, H., Sakurai, Y. (1993). A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). Journal of Biomedical Materials Research, 27, 1243–1251.

    PubMed  CAS  Google Scholar 

  65. Okano, T., Yamada, N., Okuhara, M., Sakai, H., & Sakurai, Y. (1995). Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials, 16, 297–303.

    PubMed  CAS  Google Scholar 

  66. Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Wong, H., Ozawa, S., et al. (2002). Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. Journal of Thoracic & Cardiovascular Surgery, 124(6), 1157–1164.

    Google Scholar 

  67. Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Ozawa, S., & Li, R. K. (2002). Optimal biomaterial for creation of autologous cardiac grafts. Circulation, 106(Suppl-82), I176–182.

    PubMed  Google Scholar 

  68. Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100(Suppl-9), II–63.

    Google Scholar 

  69. Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. T., Jia, Z. Q., et al. (2001). The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. Journal of Thoracic & Cardiovascular Surgery, 121, 932–942.

    CAS  Google Scholar 

  70. Herring, M., Gardner, A., & Glover, J. (1978). A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery, 84(4), 498–504.

    PubMed  CAS  Google Scholar 

  71. Graham, L. M., Vinter, D. W., Ford, J. W., Kahn, R. H., Burkel, W. E., & Stanley, J. C. (1979). Cultured autogenous endothelial cell seeding of prosthetic vascular grafts. Surgical Forum, 30, 204–206.

    PubMed  CAS  Google Scholar 

  72. James, N. L., Schindhelm, K., Slowiaczek, P., Milthorpe, B. K., Dudman, N. P., Johnson, G., et al. (1990). Endothelial cell seeding of small diameter vascular grafts. Artificial Organs, 14(5), 355–360.

    PubMed  CAS  Google Scholar 

  73. Belden, T. A., Schmidt, S. P., Falkow, L. J., & Sharp, W. V. (1982). Endothelial cell seeding of small-diameter vascular grafts. Transactions - American Society for Artificial Internal Organs, 28, 173–177.

    PubMed  CAS  Google Scholar 

  74. Gulati, R., Lerman, A., & Simari, R. D. (2005). Therapeutic uses of autologous endothelial cells for vascular disease. Clinical Science, 109(1), 27–37 (review, 103 refs).

    PubMed  CAS  Google Scholar 

  75. Jarrell, B. E., Williams, S. K., Stokes, G., Hubbard, F. A., Carabasi, R. A., Koolpe, E., et al. (1986). Use of freshly isolated capillary endothelial cells for the immediate establishment of a monolayer on a vascular graft at surgery. Surgery, 100(2), 392–399.

    PubMed  CAS  Google Scholar 

  76. Schmidt, S. P., Monajjem, N., Evancho, M. M., Pippert, T. R., & Sharp, W. V. (1988). Microvascular endothelial cell seeding of small-diameter Dacron vascular grafts. Journal of Investigative Surgery, 1(1), 35–44.

    PubMed  CAS  Google Scholar 

  77. Williams, S. K., Jarrell, B. E., Rose, D. G., Pontell, J., Kapelan, B. A., Park, P. K., et al. (1989). Human microvessel endothelial cell isolation and vascular graft sodding in the operating room. Annals of Vascular Surgery, 3(2), 146–152.

    Article  PubMed  CAS  Google Scholar 

  78. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92(2), 362–367.

    PubMed  CAS  Google Scholar 

  79. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der, Z. R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.

    PubMed  CAS  Google Scholar 

  80. Borschel, G. H., Huang, Y. C., Calve, S., Arruda, E. M., Lynch, J. B., Dow, D. E., et al. (2005). Tissue engineering of recellularized small-diameter vascular grafts. Tissue Engineering, 11(5–6), 778–786 (Jun).

    PubMed  CAS  Google Scholar 

  81. Weinberg, C. B., & Bell, E. (1986). A blood vessel model constructed from collagen and cultured vascular cells. Science, 231(4736), 397–400.

    PubMed  CAS  Google Scholar 

  82. Grassl, E. D., Oegema, T. R., & Tranquillo, R. T. (2002). Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. Journal of Biomedical Materials Research, 60(4), 607–612.

    PubMed  CAS  Google Scholar 

  83. Grassl, E. D., Oegema, T. R., & Tranquillo, R. T. (2003). A fibrin-based arterial media equivalent. Journal of Biomedical Materials Research Part A, 66(3), 550–561.

    PubMed  CAS  Google Scholar 

  84. Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., et al. (1999). Functional arteries grown in vitro. Science, 284(5413), 489–493 (see comment).

    PubMed  CAS  Google Scholar 

  85. Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20, 1133–1142.

    PubMed  CAS  Google Scholar 

  86. Grassl, E. D., Oegema, T. R., & Tranquillo, R. T. (2002). Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. Journal of Biomedical Materials Research, 60(4), 607–612.

    PubMed  CAS  Google Scholar 

  87. Grassl, E. D., Oegema, T. R., & Tranquillo, R. T. (2003). A fibrin-based arterial media equivalent. Journal of Biomedical Materials Research Part A, 66(3), 550–561.

    PubMed  CAS  Google Scholar 

  88. Kim, B. S., & Mooney, D. J. (1998). Engineering smooth muscle tissue with a predefined structure. Journal of Biomedical Materials Research, 41(2), 322–332.

    PubMed  CAS  Google Scholar 

  89. Ross, J. J., & Tranquillo, R. T. (2003). ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biology, 22(6), 477–490.

    PubMed  CAS  Google Scholar 

  90. Neidert, M. R., Lee, E. S., Oegema, T. R., & Tranquillo, R. T. (2002). Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials, 23(17), 3717–3731.

    PubMed  CAS  Google Scholar 

  91. Long, J. L., & Tranquillo, R. T. (2003). Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biology, 22(4), 339–350.

    PubMed  CAS  Google Scholar 

  92. Long, J. L., & Tranquillo, R. T. (2003). Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biology, 22(4), 339–350.

    PubMed  CAS  Google Scholar 

  93. Hecker, L., Khait, L., Welsh, M., & Birla, R. K. (2007). Bioengineering functional human aortic vascular smooth muscle strips in vitro. Biotechnology and Applied Biochemistry (in press).

  94. Baguneid, M. S., Seifalian, A. M., Salacinski, H. J., Murray, D., Hamilton, G., & Walker, M. G. (2006). Tissue engineering of blood vessels. British Journal of Surgery, 93(3), 282–290 (review, 87 refs).

    PubMed  CAS  Google Scholar 

  95. Campbell, J. H., Efendy, J. L., & Campbell, G. R. (1999). Novel vascular graft grown within recipient's own peritoneal cavity. Circulation Research, 85(12), 1173–8, 17 (see comment).

    Google Scholar 

  96. Conte, M. S. (1998). The ideal small arterial substitute: A search for the Holy Grail? [comment]. FASEB Journal, 12(1), 43–45.

    PubMed  CAS  Google Scholar 

  97. Cummings, C. L., Gawlitta, D., Nerem, R. M., & Stegemann, J. P. (2004). Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials, 25(17), 3699–3706.

    PubMed  CAS  Google Scholar 

  98. Heydarkhan-Hagvall, S., Esguerra, M., Helenius, G., Soderberg, R., Johansson, B. R., & Risberg, B. (2006). Production of extracellular matrix components in tissue-engineered blood vessels. Tissue Engineering, 12(4), 831–842.

    PubMed  CAS  Google Scholar 

  99. Heyligers, J. M., Arts, C. H., Verhagen, H. J., de Groot, P. G., & Moll, F. L. (2005). Improving small-diameter vascular grafts: From the application of an endothelial cell lining to the construction of a tissue-engineered blood vessel. Annals of Vascular Surgery, 19, 448–456 (review, 96 refs).

    PubMed  CAS  Google Scholar 

  100. Hirai, J., Kanda, K., Oka, T., & Matsuda, T. (1994). Highly oriented, tubular hybrid vascular tissue for a low pressure circulatory system. ASAIO Journal, 40(3), M383–8 (Sep).

    PubMed  CAS  Google Scholar 

  101. Hirai, J., & Matsuda, T. (1996). Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: Tissue regeneration process. Cell Transplantation, 5(1), 93–105 (Feb).

    PubMed  CAS  Google Scholar 

  102. Isenberg, B. C., Williams, C., & Tranquillo, R. T. (2006). Small-diameter artificial arteries engineered in vitro. Circulation Research, 98(1), 25–35 (review, 152 refs).

    PubMed  CAS  Google Scholar 

  103. Kaushal, S., Amiel, G. E., Guleserian, K. J., Shapira, O. M., Perry, T., Sutherland, F. W., et al. (2001). Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Medicine, 7(9), 1035–1040 (see comment).

    PubMed  CAS  Google Scholar 

  104. L’Heureux, N., Paquet, S., Labbe, R., Germain, L., & Auger, F. A. (1998). A completely biological tissue-engineered human blood vessel. FASEB Journal, 12(1), 47–56 (see comment).

    PubMed  CAS  Google Scholar 

  105. Massia, S. P., & Hubbell, J. A. (1992). Tissue engineering in the vascular graft. Cytotechnology, 10(3), 189–204 (review, 100 refs).

    PubMed  CAS  Google Scholar 

  106. Mitchell, S. L., & Niklason, L. E. (2003). Requirements for growing tissue-engineered vascular grafts. Cardiovascular Pathology, 12(2), 59–64 (Apr, review, 34 refs).

    PubMed  CAS  Google Scholar 

  107. Nerem, R. M., & Seliktar, D. (2001). Vascular tissue engineering. Annual Review of Biomedical Engineering, 3, 225–243 (review, 46 refs).

    PubMed  CAS  Google Scholar 

  108. Niklason, L. E., & Langer, R. S. (1997). Advances in tissue engineering of blood vessels and other tissues. Transplant Immunology, 5(4), 303–306 (review, 30 refs).

    PubMed  CAS  Google Scholar 

  109. Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., et al. (1999). Functional arteries grown in vitro. Science, 284(5413), 489–493 (see comment).

    PubMed  CAS  Google Scholar 

  110. Ratcliffe, A. (2000). Tissue engineering of vascular grafts. Matrix Biology, 19, 353–357 (review, 23 refs).

    PubMed  CAS  Google Scholar 

  111. Salacinski, H. J., Punshon, G., Krijgsman, B., Hamilton, G., & Seifalian, A. M. (2001). A hybrid compliant vascular graft seeded with microvascular endothelial cells extracted from human omentum. Artificial Organs, 25(12), 974–982.

    PubMed  CAS  Google Scholar 

  112. Shum-Tim, D., Stock, U., Hrkach, J., Shinoka, T., Lien, J., Moses, M. A., et al. (1999). Tissue engineering of autologous aorta using a new biodegradable polymer. Annals of Thoracic Surgery, 68(6), 2298–2304; discussion 2305.

    PubMed  CAS  Google Scholar 

  113. Teebken, O. E., & Haverich, A. (2002). Tissue engineering of small diameter vascular grafts. European Journal of Vascular & Endovascular Surgery, 23(6), 475–485 (review, 135 refs).

    Google Scholar 

  114. Thomas, A. C., Campbell, G. R., & Campbell, J. H. (2003). Advances in vascular tissue engineering. Cardiovascular Pathology, 12(5), 271–276 (Oct., review, 45 refs).

    PubMed  CAS  Google Scholar 

  115. Weinberg, C. B., & Bell, E. (1986). A blood vessel model constructed from collagen and cultured vascular cells. Science, 231(4736), 397–400.

    PubMed  CAS  Google Scholar 

  116. Weinberg, C. B., & Bell, E. (1986). A blood vessel model constructed from collagen and cultured vascular cells. Science, 231(4736), 397–400.

    PubMed  CAS  Google Scholar 

  117. Cummings, C. L., Gawlitta, D., Nerem, R. M., & Stegemann, J. P. (2004). Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials, 25(17), 3699–3706.

    PubMed  CAS  Google Scholar 

  118. Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., et al. (1999). Functional arteries grown in vitro. Science, 284(5413), 489–493 (see comment).

    PubMed  CAS  Google Scholar 

  119. L'Heureux, N., Paquet, S., Labbe, R., Germain, L., & Auger, F. A. (1998). A completely biological tissue-engineered human blood vessel. FASEB Journal, 12(1), 47–56 (see comment).

    PubMed  CAS  Google Scholar 

  120. Stock, U. A., & Mayer, J. E., Jr. (2001). Tissue engineering of cardiac valves on the basis of PGA/PLA Co-polymers. Journal of Long-Term Effects of Medical Implants, 11, 249–260 (review, 28 refs).

    PubMed  CAS  Google Scholar 

  121. Stock, U. A., Vacanti, J. P., Mayer, J. E., Jr., & Wahlers, T. (2002). Tissue engineering of heart valves – current aspects. Thoracic & Cardiovascular Surgeon, 50, 184–193 (review, 76 refs).

    CAS  Google Scholar 

  122. Butany, J., Fayet, C., Ahluwalia, M. S., Blit, P., Ahn, C., Munroe, C., et al. (2003). Biological replacement heart valves. Identification and evaluation. Cardiovascular Pathology, 12, 119–139 (review, 107 refs).

    PubMed  Google Scholar 

  123. Butany, J., Ahluwalia, M. S., Munroe, C., Fayet, C., Ahn, C., Blit, P., et al. (2003). Mechanical heart valve prostheses: Identification and evaluation. Cardiovascular Pathology, 12, 1–22 (review, 83 refs).

    PubMed  Google Scholar 

  124. Sapirstein, J. S., & Smith, P. K. (2001). The “ideal” replacement heart valve. American Heart Journal, 141, 856–860 (review, 43 refs).

    PubMed  CAS  Google Scholar 

  125. Hoerstrup, S. P., Sodian, R., Daebritz, S., Wang, J., Bacha, E. A., Martin, D. P., et al. (2000). Functional living trileaflet heart valves grown in vitro. Circulation, 102(Suppl-9), III–44.

    Google Scholar 

  126. Sodian, R., Hoerstrup, S. P., Sperling, J. S., Daebritz, S., Martin, D. P., Moran, A. M., et al. (2000). Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation, 102(Suppl-9), III–22.

    Google Scholar 

  127. Sodian, R., Sperling, J. S., Martin, D. P., Egozy, A., Stock, U., Mayer, J. E., Jr., et al. (2000). Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Engineering, 6, 183–188.

    PubMed  CAS  Google Scholar 

  128. Hoerstrup, S. P., Sodian, R., Sperling, J. S., Vacanti, J. P., & Mayer, J. E., Jr. (2000). New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Engineering, 6, 75–79.

    PubMed  CAS  Google Scholar 

  129. Sodian, R., Hoerstrup, S. P., Sperling, J. S., Daebritz, S. H., Martin, D. P., Schoen, F. J., et al. (2000). Tissue engineering of heart valves: In vitro experiences. Annals of Thoracic Surgery, 70, 140–144.

    PubMed  CAS  Google Scholar 

  130. Stock, U. A., Nagashima, M., Khalil, P. N., Nollert, G. D., Herden, T., Sperling, J. S., et al. (2000). Tissue-engineered valved conduits in the pulmonary circulation. Journal of Thoracic & Cardiovascular Surgery, 119, t-40.

    Article  Google Scholar 

  131. Sodian, R., Hoerstrup, S. P., Sperling, J. S., Martin, D. P., Daebritz, S., Mayer, J. E., Jr., et al. (2000). Evaluation of biodegradable, three-dimensional matrices for tissue engineering of heart valves. ASAIO Journal, 46, 107–110.

    PubMed  CAS  Google Scholar 

  132. Sodian, R., Sperling, J. S., Martin, D. P., Stock, U., Mayer, J. E., Jr., & Vacanti, J. P. (1999). Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Engineering, 5, 489–494.

    PubMed  CAS  Google Scholar 

  133. Shinoka, T., Shum-Tim, D., Ma, P. X., Tanel, R. E., Langer, R., Vacanti, J. P., et al. (1997). Tissue-engineered heart valve leaflets: Does cell origin affect outcome? Circulation, 96(Suppl-7), 102–107.

    Google Scholar 

  134. Shinoka, T., Ma, P. X., Shum-Tim, D., Breuer, C. K., Cusick, R. A., Zund, G., et al. (1996). Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation, 94(Suppl-8), II164–168.

    PubMed  CAS  Google Scholar 

  135. Shinoka, T., Breuer, C. K., Tanel, R. E., Zund, G., Miura, T., Ma, P. X., et al. (1995). Tissue engineering heart valves: Valve leaflet replacement study in a lamb model. Annals of Thoracic Surgery, 60(Suppl-6), S513–516.

    PubMed  CAS  Google Scholar 

  136. Wilson, G. J., Courtman, D. W., Klement, P., Lee, J. M., & Yeger, H. (1995). Acellular matrix: A biomaterials approach for coronary artery bypass and heart valve replacement. Annals of Thoracic Surgery, 60(Suppl-8), S353–358.

    PubMed  CAS  Google Scholar 

  137. Steinhoff, G., Stock, U., Karim, N., Mertsching, H., Timke, A., Meliss, R. R., et al. (2000). Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue. Circulation, 102(Suppl-5), III–50.

    Google Scholar 

  138. Bader, A., Schilling, T., Teebken, O. E., Brandes, G., Herden, T., Steinhoff, G., et al. (1998). Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. European Journal of Cardio-Thoracic Surgery, 14, 279–284.

    PubMed  CAS  Google Scholar 

  139. Zeltinger, J., Landeen, L. K., Alexander, H. G., Kidd, I. D., & Sibanda, B. (2001). Development and characterization of tissue-engineered aortic valves. Tissue Engineering, 7, 9–22.

    PubMed  CAS  Google Scholar 

  140. Hoerstrup, S. P., Zund, G., Schoeberlein, A., Ye, Q., Vogt, P. R., & Turina, M. I. (1998). Fluorescence activated cell sorting: A reliable method in tissue engineering of a bioprosthetic heart valve. Annals of Thoracic Surgery, 66, 1653–1657.

    PubMed  CAS  Google Scholar 

  141. Schnell, A. M., Hoerstrup, S. P., Zund, G., Kolb, S., Sodian, R., Visjager, J. F., et al. (2001). Optimal cell source for cardiovascular tissue engineering: Venous vs. aortic human myofibroblasts. Thoracic & Cardiovascular Surgeon, 49, 221–225.

    CAS  Google Scholar 

  142. Khait, L., & Birla, R. K. (2007). Cell based cardiac pumps and tissue engineered ventricles. Regenerative Medicine, 2(4), 1–17 (ref type: journal [full]).

    Google Scholar 

  143. Tanaka, Y., Sato, K., Shimizu, T., Yamato, M., Okano, T., & Kitamori, T. (2007). A micro-spherical heart pump powered by cultured cardiomyocytes. Lab on a Chip, 7, 207–212.

    PubMed  CAS  Google Scholar 

  144. Kubo, H., Shimizu, T., Yamato, M., Fujimoto, T., & Okano, T. (2007). Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials, 28, 3508–3516.

    PubMed  CAS  Google Scholar 

  145. Sekine, H., Shimizu, T., Yang, J., Kobayashi, E., & Okano, T. (2006). Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation, 114(1 Suppl), I87–93.

    PubMed  Google Scholar 

  146. Yildirim, Y., Naito, H., Didie, M., Karikkineth, B. C., Biermann, D., Eschenhagen, T., et al. (2007). Development of a biological ventricular assist device: Preliminary data from a small animal model. Circulation, 116(11 Suppl), I16–23.

    PubMed  Google Scholar 

  147. Taylor, D. A., Silvestry, S. C., Bishop, S. P., Annex, B. H., Lilly, R. E., Glower, D. D., et al. (1997). Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: A potential approach to myocardial repair. Proceedings of the Association of American Physicians, 109, 245–253.

    Google Scholar 

  148. Chiu, R. C., Zibaitis, A., & Kao, R. L. (1995). Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Annals of Thoracic Surgery, 60, 12–18 (see comments).

    PubMed  CAS  Google Scholar 

  149. Zibaitis, A., Greentree, D., Ma, F., Marelli, D., Duong, M., & Chiu, R. C. (1994). Myocardial regeneration with satellite cell implantation. Transplantation Proceedings, 26, 3294.

    PubMed  CAS  Google Scholar 

  150. Murry, C. E., Wiseman, R. W., Schwartz, S. M., & Hauschka, S. D. (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. Journal of Clinical Investigation, 98, 2512–2523.

    PubMed  CAS  Google Scholar 

  151. Robinson, S. W., Cho, P. W., Levitsky, H. I., Olson, J. L., Hruban, R. H., Acker, M. A., et al. (1996). Arterial delivery of genetically labelled skeletal myoblasts to the murine heart: Long-term survival and phenotypic modification of implanted myoblasts. Cell Transplantation, 5, 77–91.

    PubMed  CAS  Google Scholar 

  152. Atkins, B. Z., Lewis, C. W., Kraus, W. E., Hutcheson, K. A., Glower, D. D., & Taylor, D. A. (1999). Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Annals of Thoracic Surgery, 67, 124–129.

    PubMed  CAS  Google Scholar 

  153. Dawn, B., & Bolli, R. (2005). Bone marrow cells for cardiac regeneration: The quest for the protagonist continues. Cardiovascular Research, 65(2), 293–295 (comment).

    PubMed  CAS  Google Scholar 

  154. Vanelli, P., Beltrami, S., Cesana, E., Cicero, D., Zaza, A., Rossi, E., et al. (2004). Cardiac precursors in human bone marrow and cord blood: In vitro cell cardiogenesis. Italian Heart Journal: Official Journal of the Italian Federation of Cardiology, 5(5), 384–388.

    Google Scholar 

  155. Shim, W. S., Jiang, S., Wong, P., Tan, J., Chua, Y. L., Tan, Y. S., et al. (2004). Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochemical & Biophysical Research Communications, 324(2), 481–488.

    CAS  Google Scholar 

  156. Hattan, N., Kawaguchi, H., Ando, K., Kuwabara, E., Fujita, J., Murata, M., et al. (2005). Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovascular Research, 65(2), 334–344 (see comment).

    PubMed  CAS  Google Scholar 

  157. Fernandez-Aviles, F., San Roman, J. A., Garcia-Frade, J., Fernandez, M. E., Penarrubia, M. J., de la, F. L., et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95(7), 742–748.

    PubMed  CAS  Google Scholar 

  158. Rehman, J., Li, J., Orschell, C. M., & March, K. L. (2003). Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 107(8), 1164–1169 (see comment).

    PubMed  Google Scholar 

  159. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436 (see comment).

    PubMed  CAS  Google Scholar 

  160. Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167(3), 663–671.

    PubMed  CAS  Google Scholar 

  161. Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22(10), 1282–1289 (see comment).

    PubMed  CAS  Google Scholar 

  162. Xue, T., Cho, H. C., Akar, F. G., Tsang, S. Y., Jones, S. P., Marban, E., et al. (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: Insights into the development of cell-based pacemakers. Circulation, 111(1), 11–20 (see comment).

    PubMed  Google Scholar 

  163. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den, B. S., Hassink, R., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation, 107(21), 2733–2740 (see comment).

    PubMed  CAS  Google Scholar 

  164. Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91(6), 501–508.

    PubMed  CAS  Google Scholar 

  165. Zimmermann, W. H., & Eschenhagen, T. (2007). Embryonic stem cells for cardiac muscle engineering. Trends in Cardiovascular Medicine, 17, 134–140 (review, 60 refs).

    PubMed  CAS  Google Scholar 

  166. Amit, M., & Itskovitz-Eldor, J. (2002). Derivation and spontaneous differentiation of human embryonic stem cells. Journal of Anatomy, 200, 225–232 (review, 38 refs).

    PubMed  Google Scholar 

  167. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation, 108(3), 407–414 (see comment).

    PubMed  CAS  Google Scholar 

  168. Sachinidis, A., Fleischmann, B. K., Kolossov, E., Wartenberg, M., Sauer, H., & Hescheler, J. (2003). Cardiac specific differentiation of mouse embryonic stem cells. Cardiovascular Research, 58(2), 278–291 (review, 115 refs).

    PubMed  CAS  Google Scholar 

  169. Zandstra, P. W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., et al. (2003). Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Engineering, 9(4), 767–778. (erratum appears in Tissue Engineering 2003 Dec;9(6)1331).

    PubMed  CAS  Google Scholar 

  170. Zweigerdt, R., Burg, M., Willbold, E., Abts, H., & Ruediger, M. (2003). Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: A cell source for new therapies and screening strategies. Cytotherapy, 5(5), 399–413.

    PubMed  CAS  Google Scholar 

  171. Schroeder, M., Niebruegge, S., Werner, A., Willbold, E., Burg, M., Ruediger, M., et al. (2005). Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnology & Bioengineering, 92(7), 920–933.

    CAS  Google Scholar 

  172. Davis, M. E., Hsieh, P. C., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15 (review, 62 refs).

    PubMed  CAS  Google Scholar 

  173. Zisch, A. H., Lutolf, M. P., Ehrbar, M., Raeber, G. P., Rizzi, S. C., Davies, N., et al. (2003). Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB Journal, 17(15), 2260–2262.

    PubMed  CAS  Google Scholar 

  174. Ehrbar, M., Djonov, V. G., Schnell, C., Tschanz, S. A., Martiny-Baron, G., Schenk, U., et al. (2004). Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circulation Research, 94(8), 1124–1132.

    PubMed  CAS  Google Scholar 

  175. Akhyari, P., Fedak, P. W., Weisel, R. D., Lee, T. Y., Verma, S., Mickle, D. A., et al. (2002). Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 106(Suppl-42), I137–142.

    PubMed  Google Scholar 

  176. Fink, C., Ergun, S., Kralisch, D., Remmers, U., Weil, J., & Eschenhagen, T. (2000). Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB Journal, 14, 669–679.

    PubMed  CAS  Google Scholar 

  177. Bilodeau, K., & Mantovani, D. (2006). Bioreactors for tissue engineering: Focus on mechanical constraints. A comparative review. Tissue Engineering, 12(8), 2367–2383 (review, 90 refs).

    PubMed  CAS  Google Scholar 

  178. Chen, H. C., & Hu, Y. C. (2006). Bioreactors for tissue engineering. Biotechnology Letters, 28(18), 1415–1423 (review, 49 refs).

    PubMed  CAS  Google Scholar 

  179. Martin, I., Wendt, D., & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends in Biotechnology, 22(2), 80–86 (review, 65 refs).

    PubMed  CAS  Google Scholar 

  180. Minuth, W. W., Schumacher, K., Strehl, R., & Kloth, S. (2000). Physiological and cell biological aspects of perfusion culture technique employed to generate differentiated tissues for long term biomaterial testing and tissue engineering. Journal of Biomaterials Science, Polymer Edition, 11(5), 495–522 (review, 133 refs).

    CAS  Google Scholar 

  181. Ratcliffe, A., & Niklason, L. E. (2002). Bioreactors and bioprocessing for tissue engineering. Annals of the New York Academy of Sciences, 961, 210–215 (review, 19 refs).

    Article  PubMed  CAS  Google Scholar 

  182. Carrier, R. L., Rupnick, M., Langer, R., Schoen, F. J., Freed, L. E., & Vunjak-Novakovic, G. (2002). Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Engineering, 8, 175–188.

    PubMed  CAS  Google Scholar 

  183. Carrier, R. L., Rupnick, M., Langer, R., Schoen, F. J., Freed, L. E., & Vunjak-Novakovic, G. (2002). Effects of oxygen on engineered cardiac muscle. Biotechnology & Bioengineering, 78, 617–625.

    CAS  Google Scholar 

  184. Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813 (Jun).

    PubMed  CAS  Google Scholar 

  185. Birla, R. K., Borschel, G. H., & Dennis, R. G. (2005). In vivo conditioning of tissue-engineered heart muscle improves contractile performance. Artificial Organs, 29(11), 866–875.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Division of Cardiac Surgery at the University of Michigan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Birla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khait, L., Hecker, L., Blan, N.R. et al. Getting to the Heart of Tissue Engineering. J. of Cardiovasc. Trans. Res. 1, 71–84 (2008). https://doi.org/10.1007/s12265-007-9005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-007-9005-x

Keywords

Navigation