Skip to main content
Log in

Approaching Biomarker Discovery through Genomics

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The promise of genomic medicine lies in the ability to identify those factors that modify risk of disease at the individual level and, once identified, to be able to provide a personalized treatment or intervention to ablate the disease process. This concept is based upon a number of assumptions and current limitations that genomic science has yet to address. Critical to the development of personalized medicine is the determination of the genetic and epidemiologic cause of complex human disease, such as coronary heart disease, diabetes, asthma, and stroke. The risk factors that predispose an individual to any one of these disorders may not be unique, and the genomic profiles may be similar. Increasing the complexity of understanding the pathogenesis of these disorders is the growing recognition that the genetic risk factors likely interact not only with each other but also with poorly understood environmental factors. Ultimately, the prediction of an individual’s risk for any disorder will be determined by their genotype and their environmental exposures; however, in the absence of a defined genomic fingerprint, a subset of confirmed genetic risk factors can be used to help define biomarkers of disease. Clinically validated biomarkers can then serve as surrogates for the combined effects of genotype and environment and provide insights into disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Collins, F. S., Green, E. D., Guttmacher, A. E., Guyer, M. S. (2003) A vision for the future of genomics research. A blueprint for the genomic era. Nature, 422, 835–847.

    Article  PubMed  CAS  Google Scholar 

  2. The International HapMap Consortium. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851–862.

    Article  Google Scholar 

  3. Evans, D. M., Cardon, L. R. (2004) Guidelines for genotyping in genomewide linkage studies: Single-Nucleotide-Polymorphism maps versus microsatellite maps. American Journal of Human Genetics, 75, 687–692.

    Article  PubMed  CAS  Google Scholar 

  4. Helgadottir, A., Manolescu, A., Thorleifsson, G., Gretarsdottir, S., Jonsdottir, H., Thorsteinsdottir, U., et al. (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genetics, 36, 233–239.

    Article  PubMed  CAS  Google Scholar 

  5. Hakonarson, H., Thorvaldsson, S., Helgadottir, A., Gudbjartsson, D., Zink, F., Andresdotttir, M. et al. (2005) Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction. Journal of the American Medical Association, 293, 2245–2256.

    Article  PubMed  CAS  Google Scholar 

  6. Meschia, J. F., Brott, T. G., Brown, R. D., Crook, R., Worrall, B. B., Kissela, B., et al. (2005) Phosphodiesterase 4D and 5-lipoxygenase activating protein in ischemic stroke. Annals of Neurology, 58, 351–361.

    Article  PubMed  CAS  Google Scholar 

  7. Zee, R. Y. L., Cheng, S., Hegener, H. H., Erlich, H. A., Ridker, P. M. (2006) Genetic variants of arachidonate 5-lipoxygenase-activating protein, and risk of incident myocardial infarction and ischemic stroke. A nested case-control approach. Stroke, 37, 2007–2011.

    Article  PubMed  CAS  Google Scholar 

  8. Maznyczka, A., Mangino, M., Whittaker, A., Braund, P., Palmer, T., Tobin, M., (2007) Leukotriene B4 production in healthy subjects carrying variants of the arachidonate 5-lipoxygenase-activating protein gene associated with a risk of myocardial infarction. Clinical Science, 112, 411–416.

    Article  PubMed  CAS  Google Scholar 

  9. Wilson, P. W., D’Agostino, R. B., Levy, D., Berlanger, A. M., Silbershatz, H., Kannel, W. B. (1998) Prediction of coronary heart disease using risk factor categories. Circulation, 97, 1837–1847.

    PubMed  CAS  Google Scholar 

  10. Greenland, P., Knoll, M. D., Stamler, J., Neaton, J. D., Dyer, A. R., Garside, D. B., et al. (2001) Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. Journal of the American Medical Association, 290, 891–897.

    Article  Google Scholar 

  11. Ridker, P. M., Riffai, N., Rose, L., Buring, J. E., Cook, N. R. (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. New England Journal of Medicine, 347, 1557–1565.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, T. J., Gona, P., Larson, M. G., Tofler, G. H., Levy, D., Newton-Cheh, C., et al. (2006) Multiple biomarkers for the prediction of first major cardiovascular events and death. New England Journal of Medicine, 355, 2631–2639.

    Article  PubMed  CAS  Google Scholar 

  13. Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678.

    Article  Google Scholar 

  14. The GAIN Collaborative Research Group. (2007) New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nature Genetics, 39, 1045–1051.

    Article  Google Scholar 

  15. Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A. et al. (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 316, 1491–1493.

    Article  PubMed  CAS  Google Scholar 

  16. Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., et al. (2007) Genomewide association analysis of coronary artery disease. New England Journal of Medicine, 357, 443–453.

    Article  PubMed  CAS  Google Scholar 

  17. Dixon, A. L., Liang, L., Moffatt, M. F., Chen, W., Heath, S., Wong, K. C. C., et al. (2007) A genome-wide association study of global gene expression. Nature Genetics, 39, 1202–1207.

    Article  PubMed  CAS  Google Scholar 

  18. Goring, H. H. H., Curran, J. E., Johnson, M. P., Dyer, T. D., Charlesworth, J., Cole, S. A., et al. (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics, 39, 1208–1216.

    Article  PubMed  Google Scholar 

  19. Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., et al. (2007) Population genetics of human gene expression. Nature Genetics, 39, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Rich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, S.S. Approaching Biomarker Discovery through Genomics. J. of Cardiovasc. Trans. Res. 1, 21–24 (2008). https://doi.org/10.1007/s12265-007-9003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-007-9003-z

Keywords

Navigation