Skip to main content
Log in

Cell Therapy for Acute Myocardial Infarction—Where Do We Go From Here?

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Multiple clinical trials have been performed to test the hypothesis that administration of bone-marrow-derived progenitor and stem cells (BMCs) may improve left-ventricular (LV) function following acute myocardial infarction (AMI). These studies have generally confirmed that cell therapy administration can be safely administered; however, consensus has not been reached on whether this approach results in an improvement in LV function or clinical outcomes. Although many of the published studies have been randomized, placebo-controlled trials, many important questions regarding patient selection, methodology and trial design still exist. To date, almost no information has been obtained in regard to optimal dosing and cell type, timing of administration and preferred method of delivery. As a result, current cell therapy administration for AMI finds itself at the crossroads. In this review we have highlighted some of the important questions that remain unanswered in the field of cell therapy after AMI. We believe that future cell therapy trials should attempt to incorporate these important issues in designing upcoming clinical trials in order for the field to move forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomita, S., Li, R-K., Weisel, R. D., Mickle, D. A., Kim, E. J., Sakai, T., et al. (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 100(suppl II), II–247-II-256.

    Google Scholar 

  2. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001) Bone marrow cells regenerate infracted myocardium. Nature, 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  3. Murry, C. E., Soonpa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.

    Article  PubMed  CAS  Google Scholar 

  4. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., Robbins, R. C. (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.

    Article  PubMed  CAS  Google Scholar 

  5. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001) Mobilized bone marrow cells repair the infracted heart, improving function and survival. PNAS, 98, 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  6. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St. John, M., Xie, J-S., Cattaneo, S., et al. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. PNAS, 102, 11474–11479.

    Article  PubMed  CAS  Google Scholar 

  7. Uemura, R., Xu, M., Ahmad, N., Ashraf, M. (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98, 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  8. Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., et al. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.

    Article  PubMed  CAS  Google Scholar 

  9. Kawamoto, A., Iwasaki, H., Kusano, K., Murayama, T., Oyamada, A., Silver, M., et al. (2006) CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation, 114, 2163–2169.

    Article  PubMed  Google Scholar 

  10. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7, 430–436.

    Article  CAS  Google Scholar 

  11. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.

    Article  PubMed  CAS  Google Scholar 

  12. Strauer, B. E., Brehm, M., Zeus, T., et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106, 1913–1918.

    Article  PubMed  Google Scholar 

  13. Assmus, B., Schachinger, V., Teupe, C., et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106, 3009–3017.

    Article  PubMed  Google Scholar 

  14. Fernandez-Aviles, F., San Roman, J. A., Garcia-Frade, J., et al. (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95, 742–748.

    Article  PubMed  CAS  Google Scholar 

  15. Wollert, K. C., Meyer, G. P., Lotz, J., et al. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet, 364, 141–148.

    Article  PubMed  Google Scholar 

  16. Schachinger, V., Erbs, S., Elsasser, A. et al. (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. NEJM, 355, 1210–1221.

    Article  PubMed  CAS  Google Scholar 

  17. Lunde, K., Solheim, S., Aakhus, S., et al. (2006) Intracoronary injection of mononuclear bone marrow cells in acute wall infarction. NEJM, 355, 1199–1209.

    Article  PubMed  CAS  Google Scholar 

  18. Janssens, S., Dubois, C., Bogaert, J., et al. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomized controlled trial. Lancet, 367, 113–121.

    Article  PubMed  Google Scholar 

  19. Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007) Adult bone marrow-derived cells for cardiac repair. A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.

    Article  PubMed  Google Scholar 

  20. Lipinski, M. J., Biondi-Zoccai, G. G. L., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction. JACC, 50, 1761–1767.

    PubMed  Google Scholar 

  21. Ii, M., Nishimura, H., Iwakura, A., Wecker, A., Eaton, E., Asahara, T., et al. (2005) Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation, 111, 1114–1120.

    Article  PubMed  Google Scholar 

  22. Tsang, A., Hausenloy, D. J., Mocanu, M. M., Yellon, D. M. (2004) Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circulation Research, 95, 230–232.

    Article  PubMed  CAS  Google Scholar 

  23. Ma, J., Ge, J., Zhang, S., et al. (2005) The time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Research in Cardiology, 100, 1–7.

    Article  Google Scholar 

  24. Askari A. T., Unzek S., Popovic, Z. B., et al. (2003) Effect of stromal-cell-derived factor 1 on stem cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.

    Article  PubMed  CAS  Google Scholar 

  25. Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., Price, E. T. et al. (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery. Circulation, 112(suppl I), I–150-I-156.

    Google Scholar 

  26. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R., Schulman, S., et al. (2008). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (ProvacelTM) following acute myocardial infarction. Lancet (in press).

  27. Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005) Monitoring of bone marrow cell homing into the infracted human myocardium. Circulation, 111, 2198–2202.

    Article  PubMed  Google Scholar 

  28. Aggarwal, S., Pittenger, M. F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  29. Schuster, M. D., Kocher, A. A., Seki, T., Martens, T. P., Xiang, G., Homma, S. et al. (2004) Myocardial neovascularization by bone marrow angioblasts result in cardiomyocyte regeneration. American Journal of Physiology, 287, H525–H532.

    PubMed  CAS  Google Scholar 

  30. Bartunek, J., Vanderheyden, M., Vandekerckhove, B., et al. (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction. Circulation, 112(Suppl I), I–178–I–183.

    Google Scholar 

  31. Vulliet, P. R., Greely, M., Halloran, S. M., MacDonald, K. A., Kittleson, M. D. (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363, 783–784.

    Article  PubMed  Google Scholar 

  32. Chen, S., Fang, W., Ye, F., Liu, Y., Qian, J., Shan, S., et al. (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92–95.

    Article  PubMed  Google Scholar 

  33. Meluzin, J., Mayer, J., Groch, L., Janousek, S., Hornacek, I., Hilnomaz, O., et al. (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: The effect of the dose of transplanted cells on myocardial function. American Heart Journal, 975, e9–e15.

    Google Scholar 

  34. Solomon, S. D., Glynn, R. J., Greaves, S., Ajani, U., Rouleau, J-L., Menapace, F., et al. (2001) Recovery of ventricular function after myocardial infarction in the reperfusion era: The healing and early afterload reducing therapy study. Annals of Internal Medicine, 134, 451–458.

    PubMed  CAS  Google Scholar 

  35. Solomon, S. D., Anavekar, N., Skali, H., McMurray, J. J. V., Swedberg, K., Yusuf, S. et al. (2005) Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation, 112, 3738–3744.

    Article  PubMed  Google Scholar 

  36. Tarantini, G., Cacciavillani, L., Corbetti, F., Ramondo, A., Marra, M. P., Bacchiega, E., et al. (2005) Duration of ischemia is a major determinant of transmurality and severe microvascular obstruction after primary angioplasty. JACC, 46, 1229–1235.

    PubMed  Google Scholar 

  37. Schwartz, R. S. (2005) Microvascular obstruction in acute coronary syndromes: Onward to a new therapeutic target. Cath and Cardiovasc Int, 66, 170–172.

    Article  Google Scholar 

  38. Rochitte, C. E., Lima, J. A. C., Bluemke, D. A., Reeder, S. B., McVeigh, E. R., Furata, T., et al. (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation, 98, 1006–1014.

    PubMed  CAS  Google Scholar 

  39. WuK, C., Zerhouni, E. A., Judd, R. M., Lugo-Olivieri, C. H., Barouch, L. A., Schulman, S. P., et al. (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation, 97, 765–772.

    PubMed  CAS  Google Scholar 

  40. Hombach, V., Grebe, O., Merkle, N., Waldenmaier, S., Hoher, M., Kochs, M. et al. (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. European Heart Journal, 26, 549–557.

    Article  PubMed  Google Scholar 

  41. Heiss, C., Keymel, S., Niesler, U., Ziemann, J., Kelm, M., Kalka, C. (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. JACC, 45, 1441–1448.

    PubMed  CAS  Google Scholar 

  42. Heeschen, C., Lehmann, R., Honold, J., Assmus, B., Aicher, A., Walter, D. H., et al. (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation, 109, 1615–1622.

    Article  PubMed  Google Scholar 

  43. Tepper, O. M., Galiano, R. D., Capla, J. M., et al. (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion and incorporation into vascular structures. Circulation, 106, 2781–2786.

    Article  PubMed  Google Scholar 

  44. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infracted hearts. Nature Medicine, 9, 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  45. Sorrentino, S. A., Besler, C., Bahlmann, F. H., Meyer, M., Mueller, M., Horvath, T., et al. (2007) Extended release niacin improves endothelial function, restores re-endothelialization capacity of endothelial progenitor cells and augments vasoprotective properties of HDL in patients with metabolic syndrome. Circulation, 116, II–16.

    Article  Google Scholar 

  46. Vasa, M., Fichtischerer, S., Adler, K., Aicher, A., Martin, H., Zeiher, A. M., et al. (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 103, 2885–2890.

    Article  PubMed  CAS  Google Scholar 

  47. Sasaki, K., Heeschen, C., Aicher, A., Ziebart, T., Honald, J., Urbich, C. et al. (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. PNAS, 103, 14537–14541.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay H. Traverse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traverse, J.H., Henry, T.D. Cell Therapy for Acute Myocardial Infarction—Where Do We Go From Here?. J. of Cardiovasc. Trans. Res. 1, 64–70 (2008). https://doi.org/10.1007/s12265-007-9002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-007-9002-0

Keywords

Navigation