Skip to main content
Log in

Mechanism of Endogenous Peptide PDYBX1 and Precursor Protein YBX1 in Hirschsprung’s Disease

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Endogenous peptides, bioactive agents with a small molecular weight and outstanding absorbability, regulate various cellular processes and diseases. However, their role in the occurrence of Hirschsprung’s disease (HSCR) remains unclear. Here, we found that the expression of an endogenous peptide derived from YBX1 (termed PDYBX1 in this study) was upregulated in the aganglionic colonic tissue of HSCR patients, whereas its precursor protein YBX1 was downregulated. As shown by Transwell and cytoskeleton staining assays, silencing YBX1 inhibited the migration of enteric neural cells, and this effect was partially reversed after treatment with PDYBX1. Moreover, immunoprecipitation and immunofluorescence revealed that ERK2 bound to YBX1 and PDYBX1. Downregulation of YBX1 blocked the ERK1/2 pathway, but upregulation of PDYBX1 counteracted this effect by binding to ERK2, thereby promoting cell migration and proliferation. Taken together, the endogenous peptide PDYBX1 may partially alleviate the inhibition of the ERK1/2 pathway caused by the downregulation of its precursor protein YBX1 to antagonize the impairment of enteric neural cells. PDYBX1 may be exploited to design a novel potential therapeutic agent for HSCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lake JI, Heuckeroth RO. Enteric nervous system development: Migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013, 305: G1–G24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bahrami A, Joodi M, Moetamani-Ahmadi M, Maftouh M, Hassanian SM, Ferns GA. Genetic background of Hirschsprung disease: A bridge between basic science and clinical application. J Cell Biochem 2018, 119: 28–33.

    Article  CAS  PubMed  Google Scholar 

  3. Jaroy EG, Acosta-Jimenez L, Hotta R, Goldstein AM, Emblem R, Klungland A, et al. “Too much guts and not enough brains”: (epi)genetic mechanisms and future therapies of Hirschsprung disease - a review. Clin Epigenetics 2019, 11: 135.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ambartsumyan L, Smith C, Kapur RP. Diagnosis of Hirschsprung disease. Pediatr Dev Pathol 2020, 23: 8–22.

    Article  PubMed  Google Scholar 

  5. Hei Ha JL, Hang Lui VC, Hang Tam PK. Embryology and anatomy of Hirschsprung disease. Semin Pediatr Surg 2022, 31: 151227.

    Article  PubMed  Google Scholar 

  6. Gosain A, Frykman PK, Cowles RA, Horton J, Levitt M, Rothstein DH, et al. Guidelines for the diagnosis and management of Hirschsprung-associated enterocolitis. Pediatr Surg Int 2017, 33: 517–521.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pan W, Goldstein AM, Hotta R. Opportunities for novel diagnostic and cell-based therapies for Hirschsprung disease. J Pediatr Surg 2022, 57: 61–68.

    Article  PubMed  Google Scholar 

  8. Karim A, Tang CS, Tam PK. The emerging genetic landscape of Hirschsprung disease and its potential clinical applications. Front Pediatr 2021, 9: 638093.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vollesen ALH, Amin FM, Ashina M. Targeted pituitary adenylate cyclase-activating peptide therapies for migraine. Neurotherapeutics 2018, 15: 371–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gozes I, Sragovich S, Schirer Y, Idan-Feldman A. D-SAL and NAP: Two peptides sharing a SIP domain. J Mol Neurosci 2016, 59: 220–231.

    Article  CAS  PubMed  Google Scholar 

  11. Skorput AGJ, Zhang X, Waataja JJ, Peterson CD, Riedl MS, Kitto KF, et al. Involvement of the VGF-derived peptide TLQP-62 in nerve injury-induced hypersensitivity and spinal neuroplasticity. Pain 2018, 159: 1802–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein R, Mahlberg N, Ohren M, Ladwig A, Neumaier B, Graf R, et al. The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J Neuroimmune Pharmacol 2016, 11: 708–720.

    Article  PubMed  Google Scholar 

  13. Nishida T, Inui M, Nomizu M. Peptide therapies for ocular surface disturbances based on fibronectin-integrin interactions. Prog Retin Eye Res 2015, 47: 38–63.

    Article  CAS  PubMed  Google Scholar 

  14. Chowdhury M, Enenkel C. Intracellular dynamics of the ubiquitin-proteasome-system. F1000Res 2015, 4: 367.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Su J, Fu D, Wang Y, Chen Y, Chen R, et al. The role of YB1 in renal cell carcinoma cell adhesion. Int J Med Sci 2018, 15: 1304–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evdokimova V. Y-box binding protein 1: Looking back to the future. Biochemistry (Mosc) 2022, 87: S5–S145.

    Article  CAS  PubMed  Google Scholar 

  17. Martin M, Hua L, Wang B, Wei H, Prabhu L, Hartley AV, et al. Novel serine 176 phosphorylation of YBX1 activates NF-κB in colon cancer. J Biol Chem 2017, 292: 3433–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans MK, Matsui Y, Xu B, Willis C, Loome J, Milburn L, et al. Author Correction: Ybx1 fine-tunes PRC2 activities to control embryonic brain development. Nat Commun 2023, 14: 412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gupta MK, Polisetty RV, Sharma R, Ganesh RA, Gowda H, Purohit AK, et al. Altered transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of tumor invasion. Sci Rep 2019, 9: 10986.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chu PC, Lin PC, Wu HY, Lin KT, Wu C, Bekaii-Saab T, et al. Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene 2018, 37: 3440–3455.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang E, He X, Zhang C, Su J, Lu X, Si X, et al. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol 2018, 19: 154.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taylor L, Kerr ID, Coyle B. Y-box binding protein-1: A neglected target in pediatric brain tumors? Mol Cancer Res 2021, 19: 375–387.

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 2001, 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan Q, Ren Q, Li L, Tan H, Lu M, Tian Y, et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-beta signaling. Nat Commun 2022, 13: 438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Lv X, Chen H, Zhi Z, Wei Z, Wang B, et al. Peptide derived from AHNAK inhibits cell migration and proliferation in Hirschsprung’s disease by targeting the ERK1/2 pathway. J Proteome Res 2021, 20: 2308–2318.

    Article  CAS  PubMed  Google Scholar 

  26. To K, Fotovati A, Reipas KM, Law JH, Hu K, Wang J, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res 2010, 70: 2840–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang YW, Mai RT, Fang WH, Lin CC, Chiu CC, Wu Lee YH. YB-1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 2014, 33: 5065–5077.

    Article  CAS  PubMed  Google Scholar 

  28. Imada K, Shiota M, Kohashi K, Kuroiwa K, Song Y, Sugimoto M, et al. Mutual regulation between Raf/MEK/ERK signaling and Y-box-binding protein-1 promotes prostate cancer progression. Clin Cancer Res 2013, 19: 4638–4650.

    Article  CAS  PubMed  Google Scholar 

  29. Wolffe AP. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 1994, 16: 245–251.

    Article  CAS  PubMed  Google Scholar 

  30. Luzón-Toro B, Villalba-Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2020, 97: 114–124.

    Article  PubMed  Google Scholar 

  31. Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood 2021, 138: 71–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 2020, 5: 298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, et al. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res 2019, 38: 386.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Frémin C, Saba-El-Leil MK, Lévesque K, Ang SL, Meloche S. Functional redundancy of ERK1 and ERK2 MAP kinases during development. Cell Rep 2015, 12: 913–921.

    Article  PubMed  Google Scholar 

  35. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, et al. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65: 663–675.

    Article  CAS  PubMed  Google Scholar 

  36. Newbern J, Zhong J, Wickramasinghe RS, Li X, Wu Y, Samuels I, et al. Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci U S A 2008, 105: 17115–17120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82001590, 81801496, and 82270540).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxing Li or Weibing Tang.

Ethics declarations

Conflict of interest

All authors claim that there are no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 988 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Zhi, Z., Wang, C. et al. Mechanism of Endogenous Peptide PDYBX1 and Precursor Protein YBX1 in Hirschsprung’s Disease. Neurosci. Bull. (2023). https://doi.org/10.1007/s12264-023-01132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01132-8

Keywords

Navigation