Skip to main content
Log in

Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α in the Spotlight with Multiple Sclerosis

  • Insight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006, 27: 728–735.

    Article  CAS  PubMed  Google Scholar 

  2. Jensen SK, Michaels NJ, Ilyntskyy S, Keough MB, Kovalchuk O, Yong VW. Multimodal enhancement of remyelination by exercise with a pivotal role for oligodendroglial PGC1α. Cell Rep 2018, 24: 3167–3179.

    Article  CAS  PubMed  Google Scholar 

  3. Kuczynska Z, Metin E, Liput M, Buzanska L. Covering the role of PGC-1α in the nervous system. Cells 2021, 11: 111.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: Implications for multiple sclerosis. Acta Neuropathol Commun 2014, 2: 170.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cui YR, Bu ZQ, Yu HY, Yan LL, Feng J. Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis. Neural Regen Res 2023, 18: 1535–1541.

    Article  CAS  PubMed  Google Scholar 

  6. Ge MM, Li DY, Wang L, Zhang LQ, Liu DQ, Tian YK, et al. Naringenin promoted spinal microglia M2 polarization in rat model of cancer-induced bone pain via regulating AMPK/PGC-1α signaling axis. Biomed Pharmacother 2022, 149: 112912.

    Article  CAS  PubMed  Google Scholar 

  7. Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021, 78: 4615–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006, 127: 397–408.

    Article  CAS  PubMed  Google Scholar 

  9. Dang C, Han B, Li Q, Han R, Hao J. Up-regulation of PGC-1α in neurons protects against experimental autoimmune encephalomyelitis. FASEB J 2019, 33: 14811–14824.

    Article  CAS  PubMed  Google Scholar 

  10. Patergnani S, Morciano G, Carinci M, Leo S, Pinton P, Rimessi A. The mitochondrial stress responses: The Dr. Jekyll and Mr. Hyde of neuronal disorders. Neural Regen Res 2022, 17: 2563–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chandler HL, Stickland RC, Patitucci E, Germuska M, Chiarelli AM, Foster C, et al. Reduced brain oxygen metabolism in patients with multiple sclerosis: Evidence from dual-calibrated functional MRI. J Cereb Blood Flow Metab 2023, 43: 115–128.

    Article  CAS  PubMed  Google Scholar 

  12. Witte ME, Nijland PG, Drexhage JAR, Gerritsen W, Geerts D, van het Hof B, et al. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol 2013, 125: 231–243.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenkranz SC, Shaposhnykov AA, Träger S, Engler JB, Witte ME, Roth V, et al. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife 2021, 10: e61798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buonvicino D, Ranieri G, Guasti D, Pistolesi A, La Rocca AI, Rapizzi E, et al. Early derangement of axonal mitochondria occurs in a mouse model of progressive but not relapsing-remitting multiple sclerosis. Neurobiol Dis 2023, 178: 106015.

    Article  CAS  PubMed  Google Scholar 

  15. de Almeida MMA, Watson AES, Bibi S, Dittmann NL, Goodkey K, Sharafodinzadeh P, et al. Fractalkine enhances oligodendrocyte regeneration and remyelination in a demyelination mouse model. Stem Cell Reports 2023, 18: 519–533.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Niu J, Yu G, Wang X, Xia W, Wang Y, Hoi KK, et al. Oligodendroglial ring finger protein Rnf43 is an essential injury-specific regulator of oligodendrocyte maturation. Neuron 2021, 109: 3104–3118.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biolato M, Bianco A, Lucchini M, Gasbarrini A, Mirabella M, Grieco A. The disease-modifying therapies of relapsing-remitting multiple sclerosis and liver injury: A narrative review. CNS Drugs 2021, 35: 861–880.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiang Z, Valenza M, Cui L, Leoni V, Jeong HK, Brilli E, et al. Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington’s disease. J Neurosci 2011, 31: 9544–9553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camacho A, Huang JK, Delint-Ramirez I, Tan CY, Fuller M, Lelliott CJ, et al. Peroxisome proliferator-activated receptor gamma-coactivator-1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. Eur J Neurosci 2013, 38: 2672–2683.

    Article  PubMed  Google Scholar 

  20. Zhang LN, Zhou HY, Fu YY, Li YY, Wu F, Gu M, et al. Novel small-molecule PGC-1α transcriptional regulator with beneficial effects on diabetic db/db mice. Diabetes 2013, 62: 1297–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu Y, Kabba JA, Ruan W, Wang Y, Zhao S, Song X, et al. The PGC-1α activator ZLN005 ameliorates ischemia-induced neuronal injury in vitro and in vivo. Cell Mol Neurobiol 2018, 38: 929–939.

    Article  CAS  PubMed  Google Scholar 

  22. Ai RS, Xing K, Deng X, Han JJ, Hao DX, Qi WH, et al. Baicalin promotes CNS remyelination via PPARγ signal pathway. Neurol Neuroimmunol Neuroinflamm 2022, 9: e1142.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Fu Z, Wang C, Xu J, Ma H, Jiang M, et al. ZLN005 protects against ischemia-reperfusion-induced kidney injury by mitigating oxidative stress through the restoration of mitochondrial fatty acid oxidation. Am J Transl Res 2021, 13: 10014–10037.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This insight was supported by the National Natural Science Foundation of China (92268118, 82071396, 82271199, and 31970771), the Shaanxi Provincial Key R&D Foundation (2021ZDLSF03-09), the Fundamental Research Funds for the Central Universities (GK202201013, GK202202006, and GK202105002), the Tian Jia Bing Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YN., Zhang, MQ., Yu, FL. et al. Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α in the Spotlight with Multiple Sclerosis. Neurosci. Bull. 40, 268–272 (2024). https://doi.org/10.1007/s12264-023-01114-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01114-w

Navigation