Skip to main content

Advertisement

Log in

A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All raw data have been deposited as an online resource to the Figshare database with the name: “A systematic investigation of complement and coagulation-related protein in autism spectrum disorder by multiple reaction monitoring technology” (https://doi.org/10.6084/m9.figshare.21830145.v1).

References

  1. Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull 2017, 33: 183-193.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arora NK, Nair MKC, Gulati S, Deshmukh V, Mohapatra A, Mishra D. Neurodevelopmental disorders in children aged 2–9 years: Population-based burden estimates across five regions in India. PLoS Med 2018, 15: e1002615.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med 2015, 45: 601-613.

    Article  CAS  PubMed  Google Scholar 

  4. Maenner MJ, Shaw KA, Baio J, EdS, Washington A, Patrick M, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ 2020, 69: 1–12.

  5. Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 2017, 56: 466-474.

    Article  PubMed  Google Scholar 

  6. Singer L. Thoughts about sex and gender differences from the next generation of autism scientists. Mol Autism 2015, 6: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou H, Xu X, Yan W, Zou X, Wu L, Luo X, et al. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci Bull 2020, 36: 961-971.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang ZC, Han J. The first national prevalence of autism spectrum disorder in China. Neurosci Bull 2020, 36: 959-960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen L, Zhang H, Lin J, Gao Y, Chen M, Khan NU, et al. A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children. Mol Neurobiol 2022, 59: 3529-3545.

    Article  CAS  PubMed  Google Scholar 

  10. Vahia VN. Diagnostic and statistical manual of mental disorders 5: A quick glance. Indian J Psychiatry 2013, 55: 220-223.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shen L, Zhao Y, Zhang H, Feng C, Gao Y, Zhao D, et al. Advances in biomarker studies in autism spectrum disorders. Adv Exp Med Biol 2019, 1118: 207-233.

    Article  CAS  PubMed  Google Scholar 

  12. Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020, 502: 41-54.

    Article  CAS  PubMed  Google Scholar 

  13. Shen L, Zhang K, Feng C, Chen Y, Li S, Iqbal J, et al. iTRAQ-based proteomic analysis reveals protein profile in plasma from children with autism. Proteomics Clin Appl 2018, 12: e1700085.

    Article  PubMed  Google Scholar 

  14. Shen L, Feng C, Zhang K, Chen Y, Gao Y, Ke J, et al. Proteomics study of peripheral blood mononuclear cells (PBMCs) in autistic children. Front Cell Neurosci 2019, 13: 105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ristori MV, Mortera SL, Marzano V, Guerrera S, Vernocchi P, Ianiro G, et al. Proteomics and metabolomics approaches towards a functional insight onto AUTISM spectrum disorders: Phenotype stratification and biomarker discovery. Int J Mol Sci 2020, 21: 6274.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abraham J, Szoko N, Natowicz MR. Proteomic investigations of autism spectrum disorder: Past findings, current challenges, and future prospects. Adv Exp Med Biol 2019, 1118: 235-252.

    Article  CAS  PubMed  Google Scholar 

  17. Feng C, Chen Y, Pan J, Yang A, Niu L, Min J, et al. Redox proteomic identification of carbonylated proteins in autism plasma: Insight into oxidative stress and its related biomarkers in autism. Clin Proteomics 2017, 14: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P, et al. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 2007, 12: 292-306.

    Article  CAS  PubMed  Google Scholar 

  19. Momeni N, Brudin L, Behnia F, Nordström B, Yosefi-Oudarji A, Sivberg B, et al. High complement factor I activity in the plasma of children with autism spectrum disorders. Autism Res Treat 2012, 2012: 868576.

    PubMed  Google Scholar 

  20. Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M, et al. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 2014, 35: 2046-2054.

    Article  CAS  PubMed  Google Scholar 

  21. Ziabska K, Ziemka-Nalecz M, Pawelec P, Sypecka J, Zalewska T. Aberrant complement system activation in neurological disorders. Int J Mol Sci 2021, 22: 4675.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mansur F, Teles E Silva AL, Gomes AKS, Magdalon J, de Souza JS, Griesi-Oliveira K, et al. Complement C4 is reduced in iPSC-derived astrocytes of autism spectrum disorder subjects. Int J Mol Sci 2021, 22: 7579.

  23. Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei MT, et al. A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry 2012, 2: e91.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Masi A, Glozier N, Dale R, Guastella AJ. The immune system, cytokines, and biomarkers in autism spectrum disorder. Neurosci Bull 2017, 33: 194-204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garred P, Tenner AJ, Mollnes TE. Therapeutic targeting of the complement system: From rare diseases to pandemics. Pharmacol Rev 2021, 73: 792-827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruno A, Dolcetti E, Rizzo FR, Fresegna D, Musella A, Gentile A, et al. Inflammation-associated synaptic alterations as shared threads in depression and multiple sclerosis. Front Cell Neurosci 2020, 14: 169.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement system in brain architecture and neurodevelopmental disorders. Front Neurosci 2020, 14: 23.

  28. Krance SH, Wu CY, Zou Y, Mao H, Toufighi S, He X, et al. The complement cascade in Alzheimer’s disease: A systematic review and meta-analysis. Mol Psychiatry 2021, 26: 5532-5541.

    Article  PubMed  Google Scholar 

  29. Morgan BP, Gommerman JL, Ramaglia V. An, “outside-In” and “inside-out” consideration of complement in the multiple sclerosis brain: Lessons from development and neurodegenerative diseases. Front Cell Neurosci 2020, 14: 600656.

    Article  PubMed  Google Scholar 

  30. Bellingacci L, Mancini A, Gaetani L, Tozzi A, Parnetti L, di Filippo M. Synaptic dysfunction in multiple sclerosis: A red thread from inflammation to network disconnection. Int J Mol Sci 2021, 22: 9753.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Druart M, Le Magueresse C. Emerging roles of complement in psychiatric disorders. Front Psychiatry 2019, 10: 573.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 2014, 11: 149-155.

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Wang Q, Chen J, Zhou J, Zhou X, Xie P. A multiple-reaction-monitoring mass spectrometric method for simultaneous quantitative analysis of five plasma apolipoproteins. Sci China Chem 2014, 57: 723-731.

    Article  CAS  Google Scholar 

  34. Li Y, Liang J, Gao JN, Shen Y, Kuang HX, Xia YG. A novel LC-MS/MS method for complete composition analysis of polysaccharides by aldononitrile acetate and multiple reaction monitoring. Carbohydr Polym 2021, 272: 118478.

    Article  PubMed  Google Scholar 

  35. Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, et al. Mass spectrometry-based targeted proteomics for analysis of protein mutations. Mass Spectrom Rev 2023, 42: 796-821.

    Article  CAS  PubMed  Google Scholar 

  36. Meng FC, Xu XJ, Song TJ, Shou XJ, Wang XL, Han SP, et al. Development of an autism subtyping questionnaire based on social behaviors. Neurosci Bull 2018, 34: 789-800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du X, Shi Q, Zhao Y, Xie Y, Li X, Liu Q, et al. Se-methylselenocysteine (SMC) improves cognitive deficits by attenuating synaptic and metabolic abnormalities in alzheimer’s mice model: A proteomic study. ACS Chem Neurosci 2021, 12: 1112-1132.

    Article  CAS  PubMed  Google Scholar 

  38. Frewen B, MacCoss MJ. Using BiblioSpec for creating and searching tandem MS peptide libraries. Curr Protoc Bioinformatics 2007, Chapter 13: 13.7.1–13.713.7.12.

  39. Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK, et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol 2005, 6: R9.

    Article  PubMed  Google Scholar 

  40. Shen L, Yang A, Chen X, Xiao S, Liu X, Lin J, et al. Proteomic profiling of Cerebrum mitochondria, myelin sheath, and synaptosome revealed mitochondrial damage and synaptic impairments in association with 3 × tg-AD mice model. Cell Mol Neurobiol 2022, 42: 1745-1763.

    Article  CAS  PubMed  Google Scholar 

  41. Freund Y, Schapire R. Experiments with a new boosting algorithm. ICML’96: Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, 1996: 148–156.

  42. Dorogush AV, Ershov V, Gulin A. CatBoost: Gradient boosting with categorical features support. 2018. https://doi.org/10.48550/arXiv.1810.11363.

  43. Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Statist 2001, 29: 1189-1232.

    Article  Google Scholar 

  44. Chen Tianqi", Guestrin C. XGBoost: A scalable tree boosting system". 2016: arXiv: 1603.02754. https://arxiv.org/abs/1603.02754".

  45. Ke G, Meng Q, Wang T, Chen W, Ma W, Liu TY. A highly efficient gradient boosting decision tree. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 3149–3157.

  46. Quinlan JR. Induction of decision trees. Mach Learn. 1986, 1: 81-106.

    Article  Google Scholar 

  47. Everson TM, Lyons G, Zhang H, Soto-Ramírez N, Lockett GA, Patil VK, et al. DNA methylation loci associated with atopy and high serum IgE: A genome-wide application of recursive Random Forest feature selection. Genome Med 2015, 7: 89.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mitchell HB, Schaefer PA. A? soft? K-nearest neighbor voting scheme. Int J Intell Syst 2001, 16: 459-468.

    Article  Google Scholar 

  49. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002, 46: 389-422.

    Article  Google Scholar 

  50. Fagan K, Crider A, Ahmed AO, Pillai A. Complement C3 expression is decreased in autism spectrum disorder subjects and contributes to behavioral deficits in rodents. Mol Neuropsychiatry 2017, 3: 19-27.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Warren RP, Burger RA, Odell D, Torres AR, Warren WL. Decreased plasma concentrations of the C4B complement protein in autism. Arch Pediatr Adolesc Med 1994, 148: 180-183.

    Article  CAS  PubMed  Google Scholar 

  52. Yang J, Chen Y, Xiong X, Zhou X, Han L, Ni L, et al. Peptidome analysis reveals novel serum biomarkers for children with autism spectrum disorder in China. Proteomics Clin Appl 2018, 12: e1700164.

    Article  PubMed  Google Scholar 

  53. Woodward KJ, Stampalia J, Vanyai H, Rijhumal H, Potts K, Taylor F, et al. Atypical nested 22q11.2 duplications between LCR22B and LCR22D are associated with neurodevelopmental phenotypes including autism spectrum disorder with incomplete penetrance. Mol Genet Genomic Med 2019, 7: e00507.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Liu X, Gao H, He R, Zhao Y. Identifying of 22q11.2 variations in Chinese patients with development delay. BMC Med Genomics 2021, 14: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Halawa OA, Lin JB, Miller JW, Vavvas DG. A review of completed and ongoing complement inhibitor trials for geographic atrophy secondary to age-related macular degeneration. J Clin Med 2021, 10: 2580.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Józsi M, Tortajada A, Uzonyi B, de Goicoechea Jorge E, de Rodríguez Córdoba S. Factor H-related proteins determine complement-activating surfaces. Trends Immunol 2015, 36: 374-384.

    Article  PubMed  Google Scholar 

  57. Blom AM, Villoutreix BO, Dahlbäck B. Functions of human complement inhibitor C4b-binding protein in relation to its structure. Arch Immunol Ther Exp (Warsz) 2004, 52: 83-95.

    CAS  PubMed  Google Scholar 

  58. Sjöberg AP, Trouw LA, Blom AM. Complement activation and inhibition: A delicate balance. Trends Immunol 2009, 30: 83-90.

    Article  PubMed  Google Scholar 

  59. Comer AL, Jinadasa T, Sriram B, Phadke RA, Kretsge LN, Nguyen TPH, et al. Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol 2020, 18: e3000604.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hu VW. Chapter 17: Maternal Autoantibodies in Autism Spectrum Disorder. In: Frontiers in Autism Research: New Horizons for Diagnosis and Treatment, 1st edn. World Scientific Publishing, Singapore, 2014: 429-449.

    Chapter  Google Scholar 

  61. Greene RK, Walsh E, Mosner MG, Dichter GS. A potential mechanistic role for neuroinflammation in reward processing impairments in autism spectrum disorder. Biol Psychol 2019, 142: 1-12.

    Article  PubMed  Google Scholar 

  62. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol 2009, 207: 111-116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kleine TO, Benes L. Immune surveillance of the human central nervous system (CNS): Different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons. Cytometry A 2006, 69: 147-151.

    Article  PubMed  Google Scholar 

  64. Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition of the complement system in diseases of the central nervous system. Front Immunol 2019, 10: 362.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74: 691-705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 2013, 16: 1773-1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorelik A, Sapir T, Haffner-Krausz R, Olender T, Woodruff TM, Reiner O. Developmental activities of the complement pathway in migrating neurons. Nat Commun 2017, 8: 15096.

    Article  PubMed  PubMed Central  Google Scholar 

  68. English JA, Lopez LM, O’Gorman A, Föcking M, Hryniewiecka M, Scaife C, et al. Blood-based protein changes in childhood are associated with increased risk for later psychotic disorder: Evidence from a nested case-control study of the ALSPAC longitudinal birth cohort. Schizophr Bull 2018, 44: 297-306.

    Article  PubMed  Google Scholar 

  69. Rahman MR, Petralia MC, Ciurleo R, Bramanti A, Fagone P, Shahjaman M, et al. Comprehensive analysis of RNA-seq gene expression profiling of brain transcriptomes reveals novel genes, regulators, and pathways in autism spectrum disorder. Brain Sci 2020, 10: 747.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nardone S, Sams DS, Reuveni E, Getselter D, Oron O, Karpuj M, et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry 2014, 4: e433.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci U S A 2010, 107: 7975-7980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perez-Alcazar M, Daborg J, Stokowska A, Wasling P, Björefeldt A, Kalm M, et al. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp Neurol 2014, 253: 154-164.

    Article  PubMed  Google Scholar 

  73. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016, 530: 177-183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang C, Garbuzova-Davis S, Tan J, Obregon D. C1q as a regulator of brain development: Implications for autism spectrum disorders. Brain Disord Ther 2015, 4. doi: https://doi.org/10.4172/2168-975X.10001.

  75. Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2010, 1309: 83-94.

    Article  CAS  PubMed  Google Scholar 

  76. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014, 83: 1131-1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jaini R, Wolf MR, Yu Q, King AT, Frazier TW Jr, Eng C. Maternal genetics influences fetal neurodevelopment and postnatal autism spectrum disorder-like phenotype by modulating in-utero immunosuppression. Transl Psychiatry 2021, 11: 348.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 2016, 7: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, et al. Oxidative stress in autism spectrum disorder-current progress of mechanisms and biomarkers. Front Psychiatry 2022, 13: 813304.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Li X, Shen L, Khan NU, Zhang X, Chen L, et al. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J Trace Elem Med Biol 2021, 67: 126782.

    Article  PubMed  Google Scholar 

  81. Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019, 45: 101340.

    Article  PubMed  Google Scholar 

  82. Aiyaz M, Lupton MK, Proitsi P, Powell JF, Lovestone S. Complement activation as a biomarker for Alzheimer’s disease. Immunobiology 2012, 217: 204-215.

    Article  CAS  PubMed  Google Scholar 

  83. Rezeli M, Végvári A, Ottervald J, Olsson T, Laurell T, Marko-Varga G. MRM assay for quantitation of complement components in human blood plasma - a feasibility study on multiple sclerosis. J Proteomics 2011, 75: 211-220.

    Article  CAS  PubMed  Google Scholar 

  84. Neueder A, Bates GP. A common gene expression signature in Huntington’s disease patient brain regions. BMC Med Genomics 2014, 7: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Watkins LM, Neal JW, Loveless S, Michailidou I, Ramaglia V, Rees MI, et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation 2016, 13: 161.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lin P, Nicholls L, Assareh H, Fang Z, Amos TG, Edwards RJ, et al. Transcriptome analysis of human brain tissue identifies reduced expression of complement complex C1Q Genes in Rett syndrome. BMC Genomics 2016, 17: 427.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Qin Y, Chen Y, Yang J, Wu F, Zhao L, Yang F, et al. Serum glycopattern and Maackia amurensis lectin-II binding glycoproteins in autism spectrum disorder. Sci Rep 2017, 7: 46041.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Warren RP, Singh VK, Cole P, Odell JD, Pingree CB, Warren WL, et al. Increased frequency of the null allele at the complement C4b locus in autism. Clin Exp Immunol 1991, 83: 438-440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Odell D, Maciulis A, Cutler A, Warren L, McMahon WM, Coon H, et al. Confirmation of the association of the C4B null allelle in autism. Hum Immunol 2005, 66: 140-145.

    Article  CAS  PubMed  Google Scholar 

  90. Mostafa GA, Shehab AA. The link of C4B null allele to autism and to a family history of autoimmunity in Egyptian autistic children. J Neuroimmunol 2010, 223: 115-119.

    Article  CAS  PubMed  Google Scholar 

  91. Smith SEP, Hsiao E, Patterson PH. Activation of the maternal immune system as a risk factor for neuropsychiatric disorders. In: In: Maternal Influences on Fetal Neurodevelopment. 1st ed. Springer New York, 2010: 97–115.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31870825), the Shenzhen Bureau of Science, Technology, and Information (JCYJ20170412110026229), the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2022SHIBS0003), and 2019 Guiyang Science and Technology Bureau, and the Guiyang First People’s Hospital, Great Health Science and Technology Cooperation Project. We thank all the individuals who participated in the study and the Instrument Analysis Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Shen.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Ethical Approval

This research was approved by the Human Research Ethics Committees of Shenzhen University (M20220203) and the Maternal and Child Health Hospital of Baoan (20170801) and complies with the guidelines of the Helsinki Declaration. Written informed consent for study participation was given by the children’s guardians.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Tang, X., Feng, C. et al. A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology. Neurosci. Bull. 39, 1623–1637 (2023). https://doi.org/10.1007/s12264-023-01055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01055-4

Keywords

Navigation