Skip to main content

Advertisement

Log in

Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe?

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer’s disease and diseases that cause hypoxia in the brain such as anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018, 15: 490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhuang M, Joshi S, Sun H, Batabyal T, Fraser CL, Kapur J. Difluoroboron β-diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging. Sci Rep 2021, 11: 1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF overexpression enhances the preconditioning effect of brief episodes of hypoxia, promoting survival of GABAergic neurons. Neurosci Bull 2020, 36: 733–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai H, Mu Z, Jiang Z, Wang Y, Yang GY, Zhang Z. Hypoxia-controlled matrix metalloproteinase-9 hyperexpression promotes behavioral recovery after ischemia. Neurosci Bull 2015, 31: 550–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adeyemi OS, Awakan OJ, Afolabi LB, Rotimi DE, Oluwayemi E, Otuechere CA. Hypoxia and the kynurenine pathway: Implications and therapeutic prospects in alzheimer’s disease. Oxid Med Cell Longev 2021, 2021: 5522981.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mistry N, Mazer CD, Sled JG, Lazarus AH, Cahill LS, Solish M, et al. Red blood cell antibody-induced anemia causes differential degrees of tissue hypoxia in kidney and brain. Am J Physiol Regul Integr Comp Physiol 2018, 314: R611–R622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021, 68: 101343.

    Article  CAS  PubMed  Google Scholar 

  8. Hoiland RL, Howe CA, Carter HH, Tremblay JC, Willie CK, Donnelly J, et al. UBC-Nepal expedition: Phenotypical evidence for evolutionary adaptation in the control of cerebral blood flow and oxygen delivery at high altitude. J Physiol 2019, 597: 2993–3008.

    Article  CAS  PubMed  Google Scholar 

  9. Vu C, Bush A, Choi S, Borzage M, Miao X, Nederveen AJ, et al. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias. Am J Hematol 2021, 96: 901–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dominik C. Fuhrmann, Mitochondrial composition and function under the control of hypoxia. Redox Biol 2017, 12: 208–215.

    Article  Google Scholar 

  11. Niu X, Li S, Zheng S, Xiong H, Lv J, Zhang H, et al. Hypoxia-induced brain cell damage in male albino wistar rat. Saudi J Biol Sci 2018, 25: 1473–1477.

    Article  CAS  PubMed  Google Scholar 

  12. Qian-Feng Wang. Effects of multi-environmental factors on physiological and biochemical responses of large yellow croaker. Larimichthys crocea. Chemosphere 2017, 184: 907–915.

    Article  Google Scholar 

  13. Lau GY, Mandic M, Richards JG. Evolution of cytochrome c oxidase in hypoxia tolerant sculpins (Cottidae, Actinopterygii). Mol Biol Evol 2017, 34: 2153–2162.

    Article  CAS  PubMed  Google Scholar 

  14. Xiang F, Ma SY, Zhang DX, Zhang Q, Huang YS. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II. Int J Biochem Cell Biol 2016, 79: 239–248.

    Article  CAS  PubMed  Google Scholar 

  15. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun 2016, 7: 11635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 2020, 21: 268–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burmester T, Weich B, Reinhardt S, Hankeln T. A vertebrate globin expressed in the brain. Nature 2000, 407: 520–523.

    Article  CAS  PubMed  Google Scholar 

  18. Henderson KK, McCanse W, Urano T, Kuwahira I, Clancy R, Gonzalez NC. Acute vs. chronic effects of elevated hemoglobin O2 affinity on O2 transport in maximal exercise. J Appl Physiol (1985) 2000, 89: 265–272.

  19. Vallone B, Nienhaus K, Matthes A, Brunori M, Nienhaus GU. The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proc Natl Acad Sci U S A 2004, 101: 17351–17356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nadra AD, Martí MA, Pesce A, Bolognesi M, Estrin DA. Exploring the molecular basis of heme coordination in human neuroglobin. Proteins 2008, 71: 695–705.

    Article  CAS  PubMed  Google Scholar 

  21. Kaynezhad P, Jeffery G, Bainbridge J, Sivaprasad S, Tachtsidis I, Hay-Schmidt A, et al. The role of neuroglobin in retinal hemodynamics and metabolism: A real-time study. Transl Vis Sci Technol 2022, 11: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sun Y, Jin K, Mao XO, Xie L, Peel A, Childs JT, et al. Effect of aging on neuroglobin expression in rodent brain. Neurobiol Aging 2005, 26: 275–278.

    Article  CAS  PubMed  Google Scholar 

  23. Cardinale A, Fusco FR, Paldino E, Giampà C, Marino M, Nuzzo MT, et al. Localization of neuroglobin in the brain of R6/2 mouse model of Huntington’s disease. Neurol Sci 2018, 39: 275–285.

    Article  CAS  PubMed  Google Scholar 

  24. Bentmann A, Schmidt M, Reuss S, Wolfrum U, Hankeln T, Burmester T. Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem 2005, 280: 20660–20665.

    Article  CAS  PubMed  Google Scholar 

  25. Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, et al. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 2010, 107: 21570–21575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burmester T, Hankeln T. What is the function of neuroglobin? J Exp Biol 2009, 212: 1423–1428.

    Article  CAS  PubMed  Google Scholar 

  27. Keppner A, Maric D, Correia M, Koay TW, Orlando IMC, Vinogradov SN, et al. Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020, 37: 101687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong Y, Zhao R, Chen XQ, Yu ACH. 14-3-3γ and neuroglobin are new intrinsic protective factors for cerebral ischemia. Mol Neurobiol 2010, 41: 218–231.

    Article  CAS  PubMed  Google Scholar 

  29. Yu Z, Cheng C, Liu Y, Liu N, Lo EH, Wang X. Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death Dis 2018, 9: 945.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen XQ, Qin LY, Zhang CG, Yang LT, Gao Z, Liu S, et al. Presence of neuroglobin in cultured astrocytes. Glia 2005, 50: 182–186.

    Article  PubMed  Google Scholar 

  31. Xiong XX, Pan F, Chen RQ, Hu DX, Qiu XY, Li CY, et al. Neuroglobin boosts axon regeneration during ischemic reperfusion via p38 binding and activation depending on oxygen signal. Cell Death Dis 2018, 9: 163.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oamen HP, Romero Romero N, Knuckles P, Saarikangas J, Radman-Livaja M, Dong Y, et al. A rare natural lipid induces neuroglobin expression to prevent amyloid oligomers toxicity and retinal neurodegeneration. Aging Cell 2022, 21: e13645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amri F, Ghouili I, Amri M, Carrier A, Masmoudi-Kouki O. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. J Neurochem 2017, 140: 151–169.

    Article  CAS  PubMed  Google Scholar 

  34. Ye SQ, Zhou XY, Lai XJ, Zheng L, Chen XQ. Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3gamma. Acta Pharmacol Sin 2009, 30: 913–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Binyamin, Zuckerman, . Characterization of gene expression associated with the adaptation of the nematode C. elegans to hypoxia and reoxygenation stress reveals an unexpected function of the neuroglobin GLB-5 in innate immunity. Free Radic Biol Med 2017, 108: 858–873.

  36. Chen XQ, Liu S, Qin LY, Wang CR, Fung YWW, Yu ACH. Selective regulation of 14-3-3eta in primary culture of cerebral cortical neurons and astrocytes during development. J Neurosci Res 2005, 79: 114–118.

    Article  CAS  PubMed  Google Scholar 

  37. Chen XQ, Fung YWW, Yu ACH. Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes. J Cereb Blood Flow Metab 2005, 25: 338–347.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Q, Ding Y, Yao Y, Yu Y, Yang L, Cui H. Creating rat model for hypoxic brain damage in neonates by oxygen deprivation. PLoS One 2013, 8: e83589.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Lan SJ, Liu QR, Liu JM, Chen XQ. Neuroglobin, a novel intracellular hexa-coordinated globin, functions as a tumor suppressor in hepatocellular carcinoma via Raf/MAPK/Erk. Mol Pharmacol 2013, 83: 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  40. Giuffrè A, Moschetti T, Vallone B, Brunori M. Neuroglobin: Enzymatic reduction and oxygen affinity. Biochem Biophys Res Commun 2008, 367: 893–898.

    Article  PubMed  Google Scholar 

  41. Aldera AP, Govender D. Gene of the month: SDH. J Clin Pathol 2018, 71: 95–97.

    Article  CAS  PubMed  Google Scholar 

  42. Wen H, Liu L, Zhan L, Liang D, Li L, Liu D, et al. Neuroglobin mediates neuroprotection of hypoxic postconditioning against transient global cerebral ischemia in rats through preserving the activity of Na+/K+ ATPases. Cell Death Dis 2018, 9: 635.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ferrante C, Batignani G, Pontecorvo E, Montemiglio LC, Vos MH, Scopigno T. Ultrafast dynamics and vibrational relaxation in six-coordinate heme proteins revealed by femtosecond stimulated Raman spectroscopy. J Am Chem Soc 2020, 142: 2285–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu XY, Chen XQ. Neuroglobin - recent developments. Biomol Concepts 2014, 5: 195–208.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang B, Chang M, Wang J, Liu Y. Neuroglobin functions as a prognostic marker and promotes the tumor growth of glioma via suppressing apoptosis. Biomed Pharmacother 2017, 88: 173–180.

    Article  CAS  PubMed  Google Scholar 

  46. Van Acker ZP, Luyckx E, Van Leuven W, Geuens E, De Deyn PP, Van Dam D, et al. Impaired hypoxic tolerance in APP23 mice: A dysregulation of neuroprotective globin levels. FEBS Lett 2017, 591: 1321–1332.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao Y, Zhang Y, Dong Y, Wu X, Liu H. Dexmedetomidine mediates neuroglobin up-regulation and alleviates the hypoxia/reoxygenation injury by inhibiting neuronal apoptosis in developing rats. Front Pharmacol 2020, 11: 555532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elena Dibrov. The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). J Biol Chem 1998, 273: 32042–32048.

    Article  Google Scholar 

  49. Ndubuizu O, LaManna JC. Brain tissue oxygen concentration measurements. Antioxid Redox Signal 2007, 9: 1207–1219.

    Article  CAS  PubMed  Google Scholar 

  50. Trent JT 3rd, Watts RA, Hargrove MS. Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 2001, 276: 30106–30110.

    Article  CAS  PubMed  Google Scholar 

  51. Bocahut A, Bernad S, Sebban P, Sacquin-Mora S. Relating the diffusion of small ligands in human neuroglobin to its structural and mechanical properties. J Phys Chem B 2009, 113: 16257–16267.

    Article  CAS  PubMed  Google Scholar 

  52. Ezhevskaya M, Trandafir F, Moens L, Dewilde S, Van Doorslaer S. EPR investigation of the role of B10 phenylalanine in neuroglobin—Evidence that B10Phe mediates structural changes in the heme region upon disulfide-bridge formation. J Inorg Biochem 2011, 105: 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  53. Ramírez CL, Petruk A, Bringas M, Estrin DA, Roitberg AE, Marti MA, et al. Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions. J Chem Theory Comput 2016, 12: 3390–3397.

    Article  PubMed  Google Scholar 

  54. Chan ASY, Saraswathy S, Rehak M, Ueki M, Rao NA. Neuroglobin protection in retinal ischemia. Invest Ophthalmol Vis Sci 2012, 53: 704–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garofalo T, Ferri A, Sorice M, Azmoon P, Grasso M, Mattei V, et al. Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells. Mol Cell Neurosci 2018, 88: 167–176.

    Article  CAS  PubMed  Google Scholar 

  56. Yu Z, Liu N, Wang Y, Li X, Wang X. Identification of neuroglobin-interacting proteins using yeast two-hybrid screening. Neuroscience 2012, 200: 99–105.

    Article  CAS  PubMed  Google Scholar 

  57. Yu Z, Xu J, Liu N, Wang Y, Li X, Pallast S, et al. Mitochondrial distribution of neuroglobin and its response to oxygen-glucose deprivation in primary-cultured mouse cortical neurons. Neuroscience 2012, 218: 235–242.

    Article  CAS  PubMed  Google Scholar 

  58. Singh SK, Kordula T, Spiegel S. Neuronal contact upregulates astrocytic sphingosine-1-phosphate receptor 1 to coordinate astrocyte-neuron cross communication. Glia 2022, 70: 712–727.

    Article  CAS  PubMed  Google Scholar 

  59. Chen L, Ren SY, Li RX, Liu K, Chen JF, Yang YJ, et al. Chronic exposure to hypoxia inhibits myelinogenesis and causes motor coordination deficits in adult mice. Neurosci Bull 2021, 37: 1397–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006, 7: 41–53.

    Article  CAS  PubMed  Google Scholar 

  61. Peuranpää P, Heliövaara-Peippo S, Fraser I, Paavonen J, Hurskainen R. Effects of anemia and iron deficiency on quality of life in women with heavy menstrual bleeding. Acta Obstet Gynecol Scand 2014, 93: 654–660.

    Article  PubMed  Google Scholar 

  62. Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 2004, 164: 1875–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li L, Dong P, Hou C, Cao F, Sun S, He F, et al. Hydroxysafflor yellow A (HSYA) attenuates hypoxic pulmonary arterial remodelling and reverses right ventricular hypertrophy in rats. J Ethnopharmacol 2016, 186: 224–233.

    Article  CAS  PubMed  Google Scholar 

  64. Liu N, Yu Z, Xiang S, Zhao S, Tjärnlund-Wolf A, Xing C, et al. Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression. Biochem J 2012, 443: 153–164.

    Article  CAS  PubMed  Google Scholar 

  65. da Conceição RR, de Souza JS, de Oliveira KC, de Barros Maciel RM, Romano MA, Romano RM, et al. Anatomical specificity of the brain in the modulation of Neuroglobin and Cytoglobin genes after chronic bisphenol a exposure. Metab Brain Dis 2017, 32: 1843–1851.

    Article  PubMed  Google Scholar 

  66. Hota KB, Hota SK, Srivastava RB, Singh SB. Neuroglobin regulates hypoxic response of neuronal cells through Hif-1α- and Nrf2-mediated mechanism. J Cereb Blood Flow Metab 2012, 32: 1046–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang H, Li Y, Xun Y, Liu H, Wei C, Wang H, et al. Polydatin protects neuronal cells from hydrogen peroxide damage by activating CREB/Ngb signaling. Mol Med Rep 2022, 25: 9.

    Article  CAS  PubMed  Google Scholar 

  68. Di Pietro V, Lazzarino G, Amorini AM, Tavazzi B, D’Urso S, Longo S, et al. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 2014, 69: 258–264.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81972362, 82173197, and 81672504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-La Yi or Xiao-Qian Chen.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1004 KB)

Supplementary file2 (MP4 181 KB)

Supplementary file3 (AVI 3051 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Jiang, HF., Li, L. et al. Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe?. Neurosci. Bull. 39, 1481–1496 (2023). https://doi.org/10.1007/s12264-023-01040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01040-x

Keywords

Navigation