Skip to main content

Advertisement

Log in

Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

A Correction to this article was published on 07 September 2023

This article has been updated

Abstract

Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion–dorsal root–sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Koltzenburg M, Lundberg LER, Torebjörk EH. Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 1992, 51: 207–219.

    Article  PubMed  Google Scholar 

  2. Ochoa JL, Yarnitsky D. Mechanical hyperalgesias in neuropathic pain patients: Dynamic and static subtypes. Ann Neurol 1993, 33: 465–472.

    Article  CAS  PubMed  Google Scholar 

  3. Tsang A, von Korff M, Lee S, Alonso J, Karam E, Angermeyer MC. Common chronic pain conditions in developed and developing countries: Gender and age differences and comorbidity with depression-anxiety disorders. J Pain 2008, 9: 883–891.

    Article  PubMed  Google Scholar 

  4. Fernández-de-las-Peñas C, de la Llave-Rincón AI, Fernández-Carnero J, Cuadrado ML, Arendt-Nielsen L, Pareja JA. Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: Evidence of central processing in unilateral neuropathy. Brain 2009, 132: 1472–1479.

    Article  PubMed  Google Scholar 

  5. Konopka KH, Harbers M, Houghton A, Kortekaas R, van Vliet A, Timmerman W, et al. Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study. PLoS One 2012, 7: e37524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao YJ, Xu ZZ, Liu YC, Wen YR, Decosterd I, Ji RR. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 2010, 148: 309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choi HS, Roh DH, Yoon SY, Moon JY, Choi SR, Kwon SG, et al. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain 2015, 156: 1046–1059.

    Article  CAS  PubMed  Google Scholar 

  8. Masgoret P, de Soto I, Caballero Á, Ríos J, Gomar C. Incidence of contralateral neurosensitive changes and persistent postoperative pain 6 months after mastectomy: A prospective, observational investigation. Medicine (Baltimore) 2020, 99: e19101.

    Article  PubMed  Google Scholar 

  9. Kayaoglu G, Ekici M, Altunkaynak B. Mechanical allodynia in healthy teeth adjacent and contralateral to endodontically diseased teeth: A clinical study. J Endod 2020, 46: 611–618.

    Article  PubMed  Google Scholar 

  10. Enax-Krumova EK, Pohl S, Westermann A, Maier C. Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia. BMC Neurol 2017, 17: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shenker NG, Haigh RC, Mapp PI, Harris N, Blake DR. Contralateral hyperalgesia and allodynia following intradermal capsaicin injection in man. Rheumatology (Oxford) 2008, 47: 1417–1421.

    Article  CAS  PubMed  Google Scholar 

  12. Koltzenburg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci 1999, 22: 122–127.

    Article  CAS  PubMed  Google Scholar 

  13. Rommel O, Malin JP, Zenz M, Jänig W. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits. Pain 2001, 93: 279–293.

    Article  PubMed  Google Scholar 

  14. Jänig W, Baron R. Complex regional pain syndrome: Mystery explained? Lancet Neurol 2003, 2: 687–697.

    Article  PubMed  Google Scholar 

  15. Christidis N, Nilsson A, Kopp S, Ernberg M. Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia. Clin J Pain 2007, 23: 467–472.

    Article  PubMed  Google Scholar 

  16. Veldman PHJM, Goris JAR. Multiple reflex sympathetic dystrophy. Which patients are at risk for developing a recurrence of reflex sympathetic dystrophy in the same or another limb. Pain 1996, 64: 463–466.

    Article  PubMed  Google Scholar 

  17. Cichon J, Blanck TJJ, Gan WB, Yang G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci 2017, 20: 1122–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim YS, Chu YX, Han L, Li M, Li Z, LaVinka PC, et al. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 2014, 81: 873–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishikawa T, Eto K, Kim SK, Wake H, Takeda I, Horiuchi H, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain. Pain 2018, 159: 1592–1606.

    Article  PubMed  Google Scholar 

  20. Melzack R, Wall PD. Pain mechanisms: A new theory. Science 1965, 150: 971–979.

    Article  CAS  PubMed  Google Scholar 

  21. Mendell LM. Constructing and deconstructing the gate theory of pain. Pain 2014, 155: 210–216.

    Article  PubMed  Google Scholar 

  22. Braz J, Solorzano C, Wang XD, Basbaum AI. Transmitting pain and itch messages: A contemporary view of the spinal cord circuits that generate gate control. Neuron 2014, 82: 522–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 2003, 24: 818–830.

    Article  CAS  PubMed  Google Scholar 

  24. Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koch SC, Acton D, Goulding M. Spinal circuits for touch, pain, and itch. Annu Rev Physiol 2018, 80: 189–217.

    Article  CAS  PubMed  Google Scholar 

  26. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 2018, 129: 343–366.

    Article  PubMed  Google Scholar 

  27. Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152: S2–S15.

    Article  PubMed  Google Scholar 

  28. Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. Brain Res Rev 2009, 60: 149–170.

    Article  CAS  PubMed  Google Scholar 

  29. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 2010, 11: 823–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020, 127: 505–525.

    Article  PubMed  Google Scholar 

  31. Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022, 23: 70–85.

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Dong HL, Gao YD, Gong YY, Ren YN, Gu N, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013, 123: 4050–4062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peirs C, Williams SG, Zhao XY, Arokiaraj CM, Ferreira DW, Noh MC, et al. Mechanical allodynia circuitry in the dorsal horn is defined by the nature of the injury. Neuron 2021, 109: 73-90.e7.

    Article  CAS  PubMed  Google Scholar 

  34. Duan B, Cheng LZ, Bourane S, Britz O, Padilla C, Garcia-Campmany L, et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 2014, 159: 1417–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng LZ, Duan B, Huang TW, Zhang Y, Chen YY, Britz O, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat Neurosci 2017, 20: 804–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D, Fatima T, et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep 2015, 13: 1246–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui L, Miao XR, Liang LL, Abdus-Saboor I, Olson W, Fleming MS, et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 2016, 91: 1137–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peirs C, Williams SPG, Zhao XY, Walsh CE, Gedeon JY, Cagle NE, et al. Dorsal horn circuits for persistent mechanical pain. Neuron 2015, 87: 797–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 2015, 85: 1289–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu SW, Zhang Q, Xia SH, Zhao WN, Li QZ, Yang JX, et al. Contralateral projection of anterior cingulate cortex contributes to mirror-image pain. J Neurosci 2021, 41: 9988–10003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gouze-Decaris E, Philippe L, Minn A, Haouzi P, Gillet P, Netter P, et al. Neurophysiological basis for neurogenic-mediated articular cartilage anabolism alteration. Am J Physiol Regul Integr Comp Physiol 2001, 280: R115–R122.

    Article  CAS  PubMed  Google Scholar 

  42. Sugimoto M, Takahashi Y, Sugimura YK, Tokunaga R, Yajima M, Kato F. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain. Pain 2021, 162: 2273–2286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang JT, Gadotti VM, Chen LN, Souza IA, Huang S, Wang DC, et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci 2019, 22: 1659–1668.

    Article  CAS  PubMed  Google Scholar 

  44. Huang DY, Yu BW. The mirror-image pain: An unclered phenomenon and its possible mechanism. Neurosci Biobehav Rev 2010, 34: 528–532.

    Article  PubMed  Google Scholar 

  45. Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 2004, 110: 299–309.

    Article  CAS  PubMed  Google Scholar 

  46. Cheng CF, Cheng JK, Chen CY, Lien CC, Chu DC, Wang SY, et al. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite Glia after peripheral nerve injury. Pain 2014, 155: 906–920.

    Article  CAS  PubMed  Google Scholar 

  47. Ji RR, Berta T, Nedergaard M. Glia and pain: Is chronic pain a gliopathy? Pain 2013, 154(Suppl 1): S10–S28.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, et al. Spinal Glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003, 23: 1026–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schreiber KL, Beitz AJ, Wilcox GL. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett 2008, 440: 63–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Watkins LR, Maier SF. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002, 82: 981–1011.

    Article  CAS  PubMed  Google Scholar 

  51. Clark AK, et al. Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 2007, 11: 223–230.

    Article  PubMed  Google Scholar 

  52. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115: 71–83.

    Article  CAS  PubMed  Google Scholar 

  53. Decosterd I, Woolf CJ. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000, 87: 149–158.

    Article  PubMed  Google Scholar 

  54. LoPinto C, Young WB, Ashkenazi A. Comparison of dynamic (brush) and static (pressure) mechanical allodynia in migraine. Cephalalgia 2006, 26: 852–856.

    Article  CAS  PubMed  Google Scholar 

  55. Bonin RP, Bories C, de Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain 2014, 10: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ma QF. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 2022, 110: 749–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Liu SB, Zhang YQ, Goulding M, Wang YQ, Ma QF. Timing mechanisms underlying gate control by feedforward inhibition. Neuron 2018, 99: 941-955.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000, 20: 4106–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19: 71–82.

    Article  CAS  PubMed  Google Scholar 

  60. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 2018, 215: 1627–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 2013, 16: 1618–1626.

    Article  CAS  PubMed  Google Scholar 

  62. Tansley S, Uttam S, Ureña Guzmán A, Yaqubi M, Pacis A, Parisien M, et al. Single-cell RNA sequencing reveals time-and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nat Commun 2022, 13: 843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Navia-Pelaez JM, Choi SH, dos Santos L, Capettini A, Xia Y, Gonen A, Agatisa-Boyle C, et al. Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. J Exp Med 2021, 218: e202059.

    Article  Google Scholar 

  64. Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 2016, 7: 17–26.

    Article  CAS  PubMed  Google Scholar 

  65. Peng J, Nan G, Zhou L, Eyo UB, Murugan M, Gan WB, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nature Commun 2016, 7: 12029.

    Article  CAS  Google Scholar 

  66. Tu YS, Muley MM, Beggs S, Salter MW. Microglia-independent peripheral neuropathic pain in male and female mice. Pain 2022, 163: e1129–e1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114: 29–36.

    Article  PubMed  Google Scholar 

  68. Attal N, Fermanian C, Fermanian J, Lanteri-Minet M, Alchaar H, Bouhassira D. Neuropathic pain: Are there distinct subtypes depending on the aetiology or anatomical lesion? Pain 2008, 138: 343–353.

    Article  CAS  PubMed  Google Scholar 

  69. Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nat Rev Neurol 2013, 9: 572–582.

    Article  CAS  PubMed  Google Scholar 

  70. Howard RF, Walker SM, Mota MP, Fitzgerald M. The ontogeny of neuropathic pain: Postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain 2005, 115: 382–389.

    Article  PubMed  Google Scholar 

  71. Kohno K, Shirasaka R, Yoshihara K, Mikuriya S, Tanaka K, Takanami K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science 2022, 376: 86–90.

    Article  CAS  PubMed  Google Scholar 

  72. Narita M, Yoshida T, Nakajima M, Narita M, Miyatake M, Takagi T, et al. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. J Neurochem 2006, 97: 1337–1348.

    Article  CAS  PubMed  Google Scholar 

  73. Bannon AW, Malmberg AB. Models of nociception: Hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci 2007, Chapter 8: Unit8.9.

  74. Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 2006, 187: 321–327.

    Article  CAS  PubMed  Google Scholar 

  75. Echeverry S, Shi XQ, Yang M, Huang H, Wu YC, Lorenzo LE, et al. Spinal microglia are required for long-term maintenance of neuropathic pain. Pain 2017, 158: 1792–1801.

    Article  PubMed  Google Scholar 

  76. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38: 79–91.

    Article  CAS  PubMed  Google Scholar 

  77. Yu XB, Liu HJ, Hamel KA, Morvan MG, Yu S, Leff J, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun 2020, 11: 264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Bo Peng (Fudan University) for helpful discussions and comments on this project. We thank all the members of the Cheng laboratory for their support and discussions. This work was supported by grants from the Ministry of Science and Technology of China (2021ZD0203302), the National Natural Science Foundation of China (32170996 and 32060199), the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2021SHIBS0002), the Guangdong Science and Technology Committee (2019A1515010041, A2021319), the Shenzhen Innovation Committee of Science and Technology (ZDSYS20200811144002008), and the Shenzhen Science and Technology Innovation Committee (JCYJ20180302174233348).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyun Peng or Longzhen Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1318 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Su, D., Huo, J. et al. Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice. Neurosci. Bull. 39, 1229–1245 (2023). https://doi.org/10.1007/s12264-022-01017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-01017-2

Keywords

Navigation