Skip to main content
Log in

Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teufel A, Wong EA, Mukhopadhyay M, Malik N, Westphal H. FoxP4, a novel forkhead transcription factor. Biochim Biophys Acta 2003, 1627: 147–152.

    Article  CAS  PubMed  Google Scholar 

  2. Bowers JM, Konopka G. The role of the FOXP family of transcription factors in ASD. Dis Markers 2012, 33: 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai CSL, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001, 413: 519–523.

    Article  CAS  PubMed  Google Scholar 

  4. Morgan AT, Webster R. Aetiology of childhood apraxia of speech: A clinical practice update for paediatricians. J Paediatr Child Health 2018, 54: 1090–1095.

    Article  PubMed  Google Scholar 

  5. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet 2010, 87: 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011, 43: 585–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sollis E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, et al. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Hum Mol Genet 2015, 25: 546–557.

    Article  PubMed  Google Scholar 

  8. Medvedeva VP, Rieger MA, Vieth B, Mombereau C, Ziegenhain C, Ghosh T, et al. Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet 2018, 28: 701–717.

    Article  PubMed Central  Google Scholar 

  9. Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, et al. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry 2015, 20: 632–639.

    Article  CAS  PubMed  Google Scholar 

  10. Snijders Blok L, Vino A, den Hoed J, Underhill HR, Monteil D, Li H, et al. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genet Med 2021, 23: 534–542.

    Article  CAS  PubMed  Google Scholar 

  11. Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004, 7: 136–144.

    Article  CAS  PubMed  Google Scholar 

  12. Nadarajah B, Parnavelas JG. Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 2002, 3: 423–432.

    Article  CAS  PubMed  Google Scholar 

  13. Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012, 139: 1535–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Xiao J, Fröhlich H, Tu X, Li L, Xu Y, et al. Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PLoS One 2015, 10: e0127671.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pearson CA, Moore DM, Tucker HO, Dekker JD, Hu H, Miquelajauregui A, et al. Foxp1 regulates neural stem cell self-renewal and bias toward deep layer cortical fates. Cell Rep 2020, 30: 1964-1981.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsui D, Vessey JP, Tomita H, Kaplan DR, Miller FD. FoxP2 regulates neurogenesis during embryonic cortical development. J Neurosci 2013, 33: 244–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia-Calero E, Botella-Lopez A, Bahamonde O, Perez-Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct 2016, 221: 2905–2917.

    Article  CAS  PubMed  Google Scholar 

  18. Buchsbaum IY, Cappello S. Neuronal migration in the CNS during development and disease: Insights from in vivo and in vitro models. Development 2019, 146: dev163766.

  19. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009, 32: 149–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shikanai M, Nakajima K, Kawauchi T. N-Cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol 2011, 4: 326–330.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meng W, Takeichi M. Adherens junction: Molecular architecture and regulation. Cold Spring Harb Perspect Biol 2009, 1: a002899.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miyamoto Y, Sakane F, Hashimoto K. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adhesion Migr 2015, 9: 183–192.

    Article  CAS  Google Scholar 

  23. Veeraval L, O’Leary CJ, Cooper HM. Adherens junctions: Guardians of cortical development. Front Cell Dev Biol 2020, 8: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 2010, 18: 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farkas LM. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 2008, 20: 707–715.

    Article  CAS  PubMed  Google Scholar 

  26. Rousso DL, Pearson CA, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, et al. Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 2012, 74: 314–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheen VL, Basel-Vanagaite L, Goodman JR, Scheffer IE, Bodell A, Ganesh VS, et al. Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus. Brain Dev 2004, 26: 326–334.

    Article  PubMed  Google Scholar 

  28. Sheen VL, Ganesh VS, Topcu M, Sebire G, Bodell A, Hill RS, et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 2004, 36: 69–76.

    Article  CAS  PubMed  Google Scholar 

  29. Fox JW, Lamperti ED, Ekşioğlu YZ, Hong SE, Feng Y, Graham DA, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998, 21: 1315–1325.

    Article  CAS  PubMed  Google Scholar 

  30. Chen JG, Rasin MR, Kwan KY, Sestan N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci U S A 2005, 102: 17792–17797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi K, Liu FC, Hirokawa K, Takahashi H. Expression of Foxp4 in the developing and adult rat forebrain. J Neurosci Res 2008, 86: 3106–3116.

    Article  CAS  PubMed  Google Scholar 

  32. Temple S. The development of neural stem cells. Nature 2001, 414: 112–117.

    Article  CAS  PubMed  Google Scholar 

  33. Sanghvi-Shah R, Weber GF. Intermediate filaments at the junction of mechanotransduction, migration, and development. Front Cell Dev Biol 2017, 5: 81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shao W, Yang J, He M, Yu XY, Lee CH, Yang Z, et al. Centrosome anchoring regulates progenitor properties and cortical formation. Nature 2020, 580: 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gärtner A, Fornasiero EF, Munck S, Vennekens K, Seuntjens E, Huttner WB, et al. N-cadherin specifies first asymmetry in developing neurons. EMBO J 2012, 31: 1893–1903.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo KI, et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 2010, 67: 588–602.

    Article  CAS  PubMed  Google Scholar 

  37. Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 2001, 276: 12301–12309.

  38. Mutch CA, Schulte JD, Olson E, Chenn A. Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS One 2010, 5: e12376.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang J, Li T, Wang JL, Xu Z, Meng W, Wu QF. Talpid3-mediated centrosome integrity restrains neural progenitor delamination to sustain neurogenesis by stabilizing adherens junctions. Cell Rep 2020, 33: 108495.

    Article  CAS  PubMed  Google Scholar 

  40. Romero DM, Poirier K, Belvindrah R, Moutkine I, Houllier A, LeMoing AG, et al. Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development. Nat Commun 2022, 13: 2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei C, Sun M, Sun X, Meng H, Li Q, Gao K, et al. RhoGEF trio regulates radial migration of projection neurons via its distinct domains. Neurosci Bull 2022, 38: 249–262.

    Article  CAS  PubMed  Google Scholar 

  42. Linford A, Yoshimura SI, Bastos RN, Langemeyer L, Gerondopoulos A, Rigden DJ, et al. Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells. Dev Cell 2012, 22: 952–966.

    Article  CAS  PubMed  Google Scholar 

  43. Tai CY, Mysore SP, Chiu C, Schuman EM. Activity-regulated N-cadherin endocytosis. Neuron 2007, 54: 771–785.

    Article  CAS  PubMed  Google Scholar 

  44. Wong KK, Gascoyne DM, Brown PJ, Soilleux EJ, Snell C, Chen H, et al. Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients. Leukemia 2014, 28: 362–372.

    Article  CAS  PubMed  Google Scholar 

  45. Roura S, Miravet S, Piedra J, García de Herreros A, Duñach M. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J Biol Chem 1999, 274: 36734–36740.

  46. Niu Y, Wang G, Li Y, Guo W, Guo Y, Dong Z. LncRNA FOXP4-AS1 promotes the progression of esophageal squamous cell carcinoma by interacting with MLL2/H3K4me3 to upregulate FOXP4. Front Oncol 2021, 11: 773864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Christopher AC, Koshy K. Neurological picture. Periventricular heterotopia in refractory epilepsy. J Neurol Neurosurg Psychiatry 2013, 84: 1136–1137.

Download references

Acknowledgements

This work was supported by the Wenzhou Municipal Science and Technology Bureau (Y20210901), the Natural Science Foundation of Zhejiang Province (LQ20H090001), and the Scientific Research Fund of Wenling Science and Technology Bureau (2018C320001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Guang Chen.

Ethics declarations

Conflict of interest

The authors have no competing financial interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zou, S., Tu, X. et al. Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice. Neurosci. Bull. 39, 1131–1145 (2023). https://doi.org/10.1007/s12264-022-01004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-01004-7

Keywords

Navigation