Skip to main content
Log in

Direction Selectivity of TmY Neurites in Drosophila

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The perception of motion is an important function of vision. Neural wiring diagrams for extracting directional information have been obtained by connectome reconstruction. Direction selectivity in Drosophila is thought to originate in T4/T5 neurons through integrating inputs with different temporal filtering properties. Through genetic screening based on synaptic distribution, we isolated a new type of TmY neuron, termed TmY-ds, that form reciprocal synaptic connections with T4/T5 neurons. Its neurites responded to grating motion along the four cardinal directions and showed a variety of direction selectivity. Intriguingly, its direction selectivity originated from temporal filtering neurons rather than T4/T5. Genetic silencing and activation experiments showed that TmY-ds neurons are functionally upstream of T4/T5. Our results suggest that direction selectivity is generated in a tripartite circuit formed among these three neurons—temporal filtering, TmY-ds, and T4/T5 neurons, in which TmY-ds plays a role in the enhancement of direction selectivity in T4/T5 neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borst A, Helmstaedter M. Common circuit design in fly and mammalian motion vision. Nat Neurosci 2015, 18: 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  2. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 2013, 500: 168–174.

    Article  CAS  PubMed  Google Scholar 

  3. Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK. A visual motion detection circuit suggested by Drosophila connectomics. Nature 2013, 500: 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mauss AS, Vlasits A, Borst A, Feller M. Visual circuits for direction selectivity. Annu Rev Neurosci 2017, 40: 211–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischbach KF, Dittrich APM. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 1989, 258: 441–475.

  6. Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, et al. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. Elife 2019, 8: e40025.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bahl A, Ammer G, Schilling T, Borst A. Object tracking in motion-blind flies. Nat Neurosci 2013, 16: 730–738.

    Article  CAS  PubMed  Google Scholar 

  8. Mauss AS, Meier M, Serbe E, Borst A. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J Neurosci 2014, 34: 2254–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schnell B, Raghu SV, Nern A, Borst A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012, 198: 389–395.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, et al. A directional tuning map of Drosophila elementary motion detectors. Nature 2013, 500: 212–216.

    Article  CAS  PubMed  Google Scholar 

  11. Fisher YE, Silies M, Clandinin TR. Orientation selectivity sharpens motion detection in Drosophila. Neuron 2015, 88: 390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meier M, Borst A. Extreme compartmentalization in a Drosophila amacrine cell. Curr Biol 2019, 29: 1545–1550.

    Article  CAS  PubMed  Google Scholar 

  13. Serbe E, Meier M, Leonhardt A, Borst A. Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 2016, 89: 829–841.

    Article  CAS  PubMed  Google Scholar 

  14. Strother JA, Wu ST, Wong AM, Nern A, Rogers EM, Le JQ, et al. The emergence of directional selectivity in the visual motion pathway of Drosophila. Neuron 2017, 94: 168–182.

    Article  CAS  PubMed  Google Scholar 

  15. Arenz A, Drews MS, Richter FG, Ammer G, Borst A. The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements. Curr Biol 2017, 27: 929–944.

    Article  CAS  PubMed  Google Scholar 

  16. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C. Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 2014, 512: 427–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 2016, 166: 245–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takemura SY, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. Elife 2017, 6: e24394.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han C, Wang D, Soba P, Zhu S, Lin X, Jan LY, et al. Integrins regulate repulsion-mediated dendritic patterning of Drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 2012, 73: 64–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Guo H, Kwan H, Wang JW, Kosek J, Lu B. PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction. Neuron 2007, 53: 201–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K, et al. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 2008, 57: 353–363.

    Article  CAS  PubMed  Google Scholar 

  22. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118: 401–415.

    Article  CAS  PubMed  Google Scholar 

  23. Lai SL, Lee T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 2006, 9: 703–709.

    Article  CAS  PubMed  Google Scholar 

  24. Gordon MD, Scott K. Motor control in a Drosophila taste circuit. Neuron 2009, 61: 373–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yue YL, Ke SS, Zhou W, Chang J. In vivo imaging reveals composite coding for diagonal motion in the Drosophila visual system. PLoS One 2016, 11: e0164020.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zheng T, Yang Z, Li A, Lv X, Zhou Z, Wang X, et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt Express 2013, 21: 9839–9850.

    Article  PubMed  Google Scholar 

  27. Xia S, Xu HT. Astrocytic gap junctions contribute to aberrant neuronal synchronization in a mouse model of MeCP2 duplication syndrome. Neurosci Bull 2022, 38: 591–606.

    Article  CAS  PubMed  Google Scholar 

  28. Reiser MB, Dickinson MH. A modular display system for insect behavioral neuroscience. J Neurosci Methods 2008, 167: 127–139.

    Article  PubMed  Google Scholar 

  29. Li B, Li S, Yan Z. Axonemal dynein DNAH5 is required for sound sensation in Drosophila larvae. Neurosci Bull 2021, 37: 523–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu Q, Fu H, Wang G, Zhang J, Yan B. Short-term visual experience leads to potentiation of spontaneous activity in mouse superior colliculus. Neurosci Bull 2021, 37: 353–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim J, Zhao T, Petralia RS, Yu Y, Peng H, Myers E, et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 2011, 9: 96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, et al. A Gal4-driver line resource for Drosophila neurobiology. Cell Rep 2012, 2: 991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J Neurosci 2001, 21: 1523–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014, 11: 338–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A. ON and OFF pathways in Drosophila motion vision. Nature 2010, 468: 300–304.

    Article  CAS  PubMed  Google Scholar 

  36. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR. Defining the computational structure of the motion detector in Drosophila. Neuron 2011, 70: 1165–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fisher YE, Leong JC, Sporar K, Ketkar MD, Gohl DM, Clandinin TR, et al. A class of visual neurons with wide-field properties is required for local motion detection. Curr Biol 2015, 25: 3178–3189.

    Article  CAS  PubMed  Google Scholar 

  38. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL. Species-specific wiring for direction selectivity in the mammalian retina. Nature 2016, 535: 105–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H, Sabbah S, et al. Direction selectivity in retinal bipolar cell axon terminals. Neuron 2021, 109: 2928–2942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr Biol 2022, 32: 3529–3544.

    Article  CAS  PubMed  Google Scholar 

  41. Jagadish S, Barnea G, Clandinin TR, Axel R. Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace. Neuron 2014, 83: 630–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo C, Pan Y, Gong Z. Recent advances in the genetic dissection of neural circuits in Drosophila. Neurosci Bull 2019, 35: 1058–1072.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Zhao W, Zhao Q, Zhou J, Li X, He Y, et al. Drosophila larval light-avoidance is negatively regulated by temperature through two pairs of central brain neurons. Neurosci Bull 2022, 38: 200–204.

    Article  PubMed  Google Scholar 

  44. Shearin HK, Quinn CD, Mackin RD, Macdonald IS, Stowers RS. t-GRASP, a targeted GRASP for assessing neuronal connectivity. J Neurosci Methods 2018, 306: 94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ji X, Yuan D, Wei H, Cheng Y, Wang X, Yang J, et al. Differentiation of Theta visual motion from Fourier motion requires LC16 and R18C12 neurons in Drosophila. iScience 2020, 23: 101041.

Download references

Acknowledgements

We thank Dr. Yufeng Pan (University of Southeast, China) and the Bloomington Drosophila Stock Center (NIH P40OD018537) for sharing stocks in this study. We thank Dr. Chi-hon Lee (Academia Sinica, Taipei, China) and CBMP-HUST colleagues, as well as the three anonymous reviewers for their constructive comments and suggestions. We also thank the Optical Bioimaging Core Facility of WNLO-HUST for imaging systems. This work was supported by grants from the National Natural Science Foundation of China (61890950 and 31871027), Fundamental Research Funds for the Central Universities/HUST (2016YXMS034 and 2014TS015), the Director Fund of WNLO, and the China Postdoctoral Science Foundation (2015T80788).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Chang or Wei Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests concerning the subject of this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3227 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Ke, S., Cheng, G. et al. Direction Selectivity of TmY Neurites in Drosophila. Neurosci. Bull. 39, 759–773 (2023). https://doi.org/10.1007/s12264-022-00966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00966-y

Keywords

Navigation