Skip to main content

Advertisement

Log in

Influence of Recent Trial History on Interval Timing

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Issa JB, Tocker G, Hasselmo ME, Heys JG, Dombeck DA. Navigating through time: A spatial navigation perspective on how the brain may encode time. Annu Rev Neurosci 2020, 43: 73–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buhusi C, Meck W. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 2005, 6: 755–765.

    Article  CAS  PubMed  Google Scholar 

  3. Paton JJ, Buonomano DV. The neural basis of timing: Distributed mechanisms for diverse functions. Neuron 2018, 98: 687–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roberts S. Isolation of an internal clock. J Exp Psychol Anim Behav Process 1981, 7: 242–268.

    Article  CAS  PubMed  Google Scholar 

  5. Meck WH. Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 1996, 3: 227–242.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Narain D, Hosseini EA, Jazayeri M. Flexible timing by temporal scaling of cortical responses. Nat Neurosci 2018, 21: 102–110.

    Article  CAS  PubMed  Google Scholar 

  7. Bakhurin KI, Goudar V, Shobe JL, Claar LD, Buonomano DV, Masmanidis SC. Differential encoding of time by prefrontal and striatal network dynamics. J Neurosci 2017, 37: 854–870.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou SL, Masmanidis SC, Buonomano DV. Neural sequences as an optimal dynamical regime for the readout of time. Neuron 2020, 108: 651-658.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 1977, 84: 279–325.

    Article  Google Scholar 

  10. Matell MS, Meck WH. Neuropsychological mechanisms of interval timing behavior. Bioessays 2000, 22: 94–103.

    Article  CAS  PubMed  Google Scholar 

  11. Toda K, Lusk NA, Watson GDR, Kim N, Lu DY, Li HE. Nigrotectal stimulation stops interval timing in mice. Curr Biol 2017, 27: 3763-3770.e3.

    Article  CAS  PubMed  Google Scholar 

  12. Weber EH. Annotationes Anatomicae et Physiologicae (Anatomical and Physiological Obervations). Lipsiae (Leipzig), Germany, 1851.

    Google Scholar 

  13. Li Y, Dudman JT. Mice infer probabilistic models for timing. Proc Natl Acad Sci U S A 2013, 110: 17154–17159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson AG, Matell MS, Crystal JD. The influence of multiple temporal memories in the peak-interval procedure. Learn Behav 2015, 43: 153–162.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Higa JJ. Rapid timing of a single transition in interfood interval duration by rats. Animal Learn Behav 1997, 25: 177–184.

    Article  Google Scholar 

  16. Akrami A, Kopec CD, Diamond ME, Brody CD. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 2018, 554: 368–372.

    Article  CAS  PubMed  Google Scholar 

  17. Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL. Adaptable history biases in human perceptual decisions. Proc Natl Acad Sci U S A 2016, 113: E3548–E3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson JA, Costabile JD, Felsen G. Mesencephalic representations of recent experience influence decision making. Elife 2016, 5: e16572.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang WQ, Liu J, Zhang DH, Xie TR, Yao HS. Short-term influence of recent trial history on perceptual choice changes with stimulus strength. Neuroscience 2019, 409: 1–15.

    Article  CAS  PubMed  Google Scholar 

  20. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci 2013, 36: 313–336.

    Article  CAS  PubMed  Google Scholar 

  21. Sun HJ, Ma X, Tang LY, Han JQ, Zhao YW, Xu XJ, et al. Modulation of beta oscillations for implicit motor timing in primate sensorimotor cortex during movement preparation. Neurosci Bull 2019, 35: 826–840.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49: 1728–1740.

    Article  PubMed  Google Scholar 

  23. Mita A, Mushiake H, Shima K, Matsuzaka Y, Jun TJ. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 2009, 12: 502–507.

    Article  CAS  PubMed  Google Scholar 

  24. Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci 2013, 33: 9082–9096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merchant H, Averbeck BB. The computational and neural basis of rhythmic timing in medial premotor cortex. J Neurosci 2017, 37: 4552–4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barthas F, Kwan AC. Secondary motor cortex: Where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci 2017, 40: 181–193.

    Article  CAS  PubMed  Google Scholar 

  27. Reep RL, Corwin JV, Hashimoto A, Watson RT. Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res Bull 1987, 19: 203–221.

    Article  CAS  PubMed  Google Scholar 

  28. Svoboda K, Li N. Neural mechanisms of movement planning: Motor cortex and beyond. Curr Opin Neurobiol 2018, 49: 33–41.

    Article  CAS  PubMed  Google Scholar 

  29. Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, et al. Neural networks of the mouse neocortex. Cell 2014, 156: 1096–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. Nature 2015, 519: 51–56.

    Article  CAS  PubMed  Google Scholar 

  31. Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT, et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 2014, 81: 179–194.

    Article  CAS  PubMed  Google Scholar 

  32. Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. Area-specificity and plasticity of history-dependent value coding during learning. Cell 2019, 177: 1858-1872.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scott BB, Constantinople CM, Akrami A, Hanks TD, Brody CD, Tank DW. Fronto-parietal cortical circuits encode accumulated evidence with a diversity of timescales. Neuron 2017, 95: 385-398.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Siniscalchi MJ, Wang HL, Kwan AC. Enhanced population coding for rewarded choices in the medial frontal cortex of the mouse. Cereb Cortex 2019, 29: 4090–4106.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sul JH, Jo S, Lee D, Jung MW. Role of rodent secondary motor cortex in value-based action selection. Nat Neurosci 2011, 14: 1202–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan Y, Mao HW, Si J. Cortical neural responses to previous trial outcome during learning of a directional choice task. J Neurophysiol 2015, 113: 1963–1976.

    Article  PubMed  Google Scholar 

  37. Wang TY, Liu J, Yao HS. Control of adaptive action selection by secondary motor cortex during flexible visual categorization. eLife 2020, 9: e54474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 2017, 545: 181–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao SL, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011, 8: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weijnen JAWM. Lick sensors as tools in behavioral and neuroscience research. Physiol Behav 1989, 46: 923–928.

    Article  CAS  PubMed  Google Scholar 

  41. Xu M, Zhang SY, Dan Y, Poo MM. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proc Natl Acad Sci U S A 2014, 111: 480–485.

    Article  CAS  PubMed  Google Scholar 

  42. Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology 2011, 2.

  43. Balci F, Gallistel CR, Allen BD, Frank KM, Gibson JM, Brunner D. Acquisition of peak responding: What is learned? Behav Processes 2009, 80: 67–75.

    Article  PubMed  Google Scholar 

  44. Buhusi CV, Aziz D, Winslow D, Carter RE, Swearingen JE, Buhusi MC. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci 2009, 123: 1102–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Komiyama T, Sato TR, O’Connor DH, Zhang YX, Huber D, Hooks BM, et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 2010, 464: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  46. Bollu T, Ito BS, Whitehead SC, Kardon B, Redd J, Liu MH, et al. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 2021, 594: 82–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franklin KBJ, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn Elsevier Academic Press, Amsterdam, Boston.

    Google Scholar 

  48. Kim J, Ghim JW, Lee JH, Jung MW. Neural correlates of interval timing in rodent prefrontal cortex. J Neurosci 2013, 33: 13834–13847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emmons EB, de Corte BJ, Kim Y, Parker KL, Matell MS, Narayanan NS. Rodent medial frontal control of temporal processing in the dorsomedial striatum. J Neurosci 2017, 37: 8718–8733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bausenhart KM, Bratzke D, Ulrich R. Formation and representation of temporal reference information. Curr Opin Behav Sci 2016, 8: 46–52.

    Article  Google Scholar 

  51. Coull JT, Droit-Volet S. Explicit understanding of duration develops implicitly through action. Trends Cogn Sci 2018, 22: 923–937.

    Article  PubMed  Google Scholar 

  52. Polti I, Martin B, van Wassenhove V. The effect of attention and working memory on the estimation of elapsed time. Sci Rep 2018, 8: 6690.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Droit-Volet S, Meck WH. How emotions colour our perception of time. Trends Cogn Sci 2007, 11: 504–513.

    Article  PubMed  Google Scholar 

  54. Sarigiannidis I, Grillon C, Ernst M, Roiser JP, Robinson OJ. Anxiety makes time pass quicker while fear has no effect. Cognition 2020, 197: 104116.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rammsayer TH, Verner M. Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. J Vis 2015, 15: 5.

    Article  PubMed  Google Scholar 

  56. Lejeune H, Wearden JH. Vierordt’s the experimental study of the time sense (1868) and its legacy. Eur J Cogn Psychol 2009, 21: 941–960.

    Article  Google Scholar 

  57. Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat Neurosci 2010, 13: 1020–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Droit-Volet S, Wearden JH, Zélanti PS. Cognitive abilities required in time judgment depending on the temporal tasks used: A comparison of children and adults. Q J Exp Psychol (Hove) 2015, 68: 2216–2242.

    Article  CAS  PubMed  Google Scholar 

  59. Karaminis T, Cicchini GM, Neil L, Cappagli G, Aagten-Murphy D, Burr D, et al. Central tendency effects in time interval reproduction in autism. Sci Rep 2016, 6: 28570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Higa JJ, Thaw JM, Staddon JE. Pigeons’ wait-time responses to transitions in interfood-interval duration: Another look at cyclic schedule performance. J Exp Anal Behav 1993, 59: 529–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niemi P, Näätänen R. Foreperiod and simple reaction time. Psychol Bull 1981, 89: 133–162.

    Article  Google Scholar 

  62. Vallesi A, Lozano VN, Correa A. Dissociating temporal preparation processes as a function of the inter-trial interval duration. Cognition 2013, 127: 22–30.

    Article  PubMed  Google Scholar 

  63. Vallesi A, Shallice T. Developmental dissociations of preparation over time: Deconstructing the variable foreperiod phenomena. J Exp Psychol Hum Percept Perform 2007, 33: 1377–1388.

    Article  PubMed  Google Scholar 

  64. Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol 2013, 23: 229–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soares S, Atallah BV, Paton JJ. Midbrain dopamine neurons control judgment of time. Science 2016, 354: 1273–1277.

    Article  CAS  PubMed  Google Scholar 

  66. Lusk N, Meck WH, Yin HH. Mediodorsal thalamus contributes to the timing of instrumental actions. J Neurosci 2020, 40: 6379–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Namboodiri VMK, Huertas MA, Monk KJ, Shouval HZ, Hussain Shuler MG. Visually cued action timing in the primary visual cortex. Neuron 2015, 86: 319–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li JC, Liao X, Zhang JX, Wang M, Yang N, Zhang J, et al. Primary auditory cortex is required for anticipatory motor response. Cereb Cortex 2017, 27: 3254–3271.

    Article  PubMed  Google Scholar 

  69. Narayanan NS, Horst NK, Laubach M. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 2006, 139: 865–876.

    Article  CAS  PubMed  Google Scholar 

  70. Kim J, Jung AH, Byun J, Jo S, Jung MW. Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Front Behav Neurosci 2009, 3: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Buhusi CV, Reyes MB, Gathers CA, Oprisan SA, Buhusi M. Inactivation of the medial-prefrontal cortex impairs interval timing precision, but not timing accuracy or scalar timing in a peak-interval procedure in rats. Front Integr Neurosci 2018, 12: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gao LX, Meng XK, Ye CQ, Zhang HT, Liu CH, Dan Y, et al. Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli. J Neurosci 2009, 29: 6013–6021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sumbre G, Muto A, Baier H, Poo MM. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature 2008, 456: 102–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meck WH. Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 2006, 1109: 93–107.

    Article  CAS  PubMed  Google Scholar 

  75. Gouvêa TS, Monteiro T, Motiwala A, Soares S, Machens C, Paton JJ. Striatal dynamics explain duration judgments. Elife 2015, 4: e11386.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bakhurin KI, Li XR, Friedman AD, Lusk NA, Watson GD, Kim N, et al. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. Elife 2020, 9: e54831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meirhaeghe N, Sohn H, Jazayeri M. A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron 2021, 109: 2995-3011.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: Encoding time in neural network states. Neuron 2007, 53: 427–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murakami M, Shteingart H, Loewenstein Y, Mainen ZF. Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron 2017, 94: 908-919.e7.

    Article  CAS  PubMed  Google Scholar 

  80. Sugrue LP, Corrado GS, Newsome WT. Matching behavior and the representation of value in the parietal cortex. Science 2004, 304: 1782–1787.

    Article  CAS  PubMed  Google Scholar 

  81. Corrado GS, Sugrue LP, Seung HS, Newsome WT. Linear-Nonlinear-Poisson models of primate choice dynamics. J Exp Anal Behav 2005, 84: 581–617.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lau B, Glimcher PW. Dynamic response-by-response models of matching behavior in rhesus monkeys. J Exp Anal Behav 2005, 84: 555–579.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gold JI, Law CT, Connolly P, Bennur S. The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J Neurophysiol 2008, 100: 2653–2668.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB, Schölvinck ML, et al. The detection of visual contrast in the behaving mouse. J Neurosci 2011, 31: 11351–11361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lak A, Hueske E, Hirokawa J, Masset P, Ott T, Urai AE, et al. Reinforcement biases subsequent perceptual decisions when confidence is low, a widespread behavioral phenomenon. Elife 2020, 9: e49834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Erlich JC, Bialek M, Brody CD. A cortical substrate for memory-guided orienting in the rat. Neuron 2011, 72: 330–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: Effects on visually and memory-guided saccades. J Neurophysiol 1999, 81: 2191–2214.

    Article  CAS  PubMed  Google Scholar 

  88. Kopec CD, Erlich JC, Brunton BW, Deisseroth K, Brody CD. Cortical and subcortical contributions to short-term memory for orienting movements. Neuron 2015, 88: 367–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Duan CA, Pan YX, Ma GF, Zhou TT, Zhang SY, Xu NL. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat Commun 2021, 12: 2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gouvêa TS, Monteiro T, Soares S, Atallah BV, Paton JJ. Ongoing behavior predicts perceptual report of interval duration. Front Neurorobot 2014, 8: 10.

    PubMed  PubMed Central  Google Scholar 

  91. Safaie M, Jurado-Parras MT, Sarno S, Louis J, Karoutchi C, Petit LF, et al. Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proc Natl Acad Sci U S A 2020, 117: 13084–13093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen ZR, Zhang ZY, Zhang W, Xie TR, Li YP, Xu XH, et al. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate Licking movement and nigral responses. Cell Rep 2021, 37: 109847.

    Article  CAS  PubMed  Google Scholar 

  93. Rossi MA, Li HE, Lu DY, Kim IH, Bartholomew RA, Gaidis E, et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci 2016, 19: 742–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci Bull 2022, 2022: 1–22.

    CAS  Google Scholar 

  95. Ku YX, Yuan TF. “transient” or “persistent” coding for working memory. Neurosci Bull 2020, 36: 1233–1235.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mello GBM, Soares S, Paton JJ. A scalable population code for time in the striatum. Curr Biol 2015, 25: 1113–1122.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Innovation 2030 Major Program of China (2021ZD0203700/2021ZD0203703), the National Natural Science Foundation of China (31771151 and 32171030), Lingang Lab (LG202104-01-03), a Shanghai Municipal Science and Technology Major Project (2018SHZDZX05), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32010200). We thank Yaping Li for technical assistance, and we are also grateful for technical help from Dr. Pengfei Wei and Dr. Liping Wang in Shenzhen Institute of Advanced Technology, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishan Yao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1006 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Huang, C., Zhang, Y. et al. Influence of Recent Trial History on Interval Timing. Neurosci. Bull. 39, 559–575 (2023). https://doi.org/10.1007/s12264-022-00954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00954-2

Keywords

Navigation