This is a preview of subscription content, access via your institution.

References
Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci 2004, 5: 844–852.
Lisman J, Cooper K, Sehgal M, Silva AJ. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 2018, 21: 309–314.
Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 2019, 22: 154–166.
Nam MH, Han KS, Lee J, Won W, Koh W, Bae JY. Activation of astrocytic μ-opioid receptor causes conditioned place preference. Cell Rep 2019, 28: 1154-1166.e5.
Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat Neurosci 2021, 24: 82–92.
Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144: 810–823.
Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 2018, 174: 59-71.e14.
Kol A, Adamsky A, Groysman M, Kreisel T, London M, Goshen I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat Neurosci 2020, 23: 1229–1239.
Li YL, Li LX, Wu JT, Zhu ZG, Feng X, Qin LM, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A 1 receptors. eLife 2020, 9: e57155.
Pabst M, Braganza O, Dannenberg H, Hu W, Pothmann L, Rosen J, et al. Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron 2016, 90: 853–865.
Oe Y, Wang XW, Patriarchi T, Konno A, Ozawa K, Yahagi K, et al. Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat Commun 2020, 11: 471.
Zhang K, Förster R, He WJ, Liao X, Li J, Yang CY, et al. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci 2021, 24: 1686–1698.
Guo W, Robert B, Polley DB. The cholinergic basal forebrain links auditory stimuli with delayed reinforcement to support learning. Neuron 2019, 103: 1164-1177.e6.
Liu JH, Zhang M, Wang Q, Wu DY, Jie W, Hu NY, et al. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol Psychiatry 2022, 27: 873–885.
Hu NY, Chen YT, Wang Q, Jie W, Liu YS, You QL, et al. Expression patterns of inducible cre recombinase driven by differential astrocyte-specific promoters in transgenic mouse lines. Neurosci Bull 2020, 36: 530–544.
Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J, Herry C, et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 2011, 480: 331–335.
Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017, 18: 222–235.
Martin-Fernandez M, Jamison S, Robin LM, Zhao Z, Martin ED, Aguilar J, et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017, 20: 1540–1548.
Koukouli F, Changeux JP. Do nicotinic receptors modulate high-order cognitive processing? Trends Neurosci 2020, 43: 550–564.
Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 2009, 10: 211–223.
Acknowledgements
This Research Highlight was supported by grants from the National Key R&D Program of China (2021ZD0202704), the National Natural Science Foundation of China (31830033, 82090032), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R37), the Key Area Research and Development Program of Guangdong Province (2018B030334001, 2018B030340001), Guangdong Basic and Applied Basic Research Foundation (2020A1515110565), and the Science and Technology Program of Guangzhou (202007030013).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Rights and permissions
About this article
Cite this article
Wu, JL., Gao, TM. Monitoring the Activity of Astrocytes in Learning and Memory. Neurosci. Bull. 38, 1117–1120 (2022). https://doi.org/10.1007/s12264-022-00894-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12264-022-00894-x