Skip to main content
Log in

The Mechanism for Allocating Limited Working Memory Resources in Multitasking

  • Insight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Wheeler ME, Treisman AM. Binding in short-term visual memory. J Exp Psychol Gen 2002, 131: 48–64.

    Article  Google Scholar 

  2. Luria R, Vogel EK. Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia 2011, 49: 1632–1639.

    Article  Google Scholar 

  3. Ku YX, Yuan TF. “transient” or “persistent” coding for working memory. Neurosci Bull 2020, 36: 1233–1235.

    Article  Google Scholar 

  4. Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature 1997, 390: 279–281.

    Article  CAS  Google Scholar 

  5. Vogel EK, Woodman GF, Luck SJ. Storage of features, conjunctions, and objects in visual working memory. J Exp Psychol Hum Percept Perform 2001, 27: 92–114.

    Article  CAS  Google Scholar 

  6. Alvarez GA, Cavanagh P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol Sci 2004, 15: 106–111.

    Article  CAS  Google Scholar 

  7. Awh E, Barton B, Vogel EK. Visual working memory represents a fixed number of items regardless of complexity. Psychol Sci 2007, 18: 622–628.

    Article  Google Scholar 

  8. Bays PM, Husain M. Dynamic shifts of limited working memory resources in human vision. Science 2008, 321: 851–854.

    Article  CAS  Google Scholar 

  9. Markov YA, Utochkin IS, Brady TF. Real-world objects are not stored in holistic representations in visual working memory. J Vis 2021, 21: 18.

    Article  Google Scholar 

  10. Anderson DE, Vogel EK, Awh E. Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J Neurosci 2011, 31: 1128–1138.

    Article  CAS  Google Scholar 

  11. Baddeley A. Working memory: Theories, models, and controversies. Annu Rev Psychol 2012, 63: 1–29.

    Article  Google Scholar 

  12. Wood JN. When do spatial and visual working memory interact? Atten Percept Psychophys 2011, 73: 420–439.

    Article  Google Scholar 

  13. Roland PE. Cortical organization of voluntary behavior in man. Hum Neurobiol 1985, 4: 155–167.

    CAS  PubMed  Google Scholar 

  14. Klingberg T. Concurrent performance of two working memory tasks: Potential mechanisms of interference. Cereb Cortex 1998, 8: 593–601.

    Article  CAS  Google Scholar 

  15. Klingberg T, Roland PE. Interference between two concurrent tasks is associated with activation of overlapping fields in the cortex. Brain Res Cogn Brain Res 1997, 6: 1–8.

    Article  CAS  Google Scholar 

  16. Just MA, Carpenter PA, Keller TA, Emery L, Zajac H, Thulborn KR. Interdependence of nonoverlapping cortical systems in dual cognitive tasks. NeuroImage 2001, 14: 417–426.

    Article  CAS  Google Scholar 

  17. Watanabe K, Funahashi S. Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nat Neurosci 2014, 17: 601–611.

    Article  CAS  Google Scholar 

  18. Dai J, Brooks DI, Sheinberg DL. Optogenetic and electrical microstimulation systematically bias visuospatial choice in primates. Curr Biol 2014, 24: 63–69.

    Article  Google Scholar 

  19. Funahashi S, Bruce CJ, Goldman-Rakic PS. Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 1990, 63: 814–831.

    Article  CAS  Google Scholar 

  20. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK. The importance of mixed selectivity in complex cognitive tasks. Nature 2013, 497: 585–590.

    Article  CAS  Google Scholar 

  21. Xu YJ, Liu X, Cao X, Huang CP, Liu EK, Qian S, et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation (N Y) 2021, 2: 100179.

Download references

Acknowledgements

This insight was supported by the Shenzhen Oversea Innovation Team Project (KQTD20180413181834876), the National Natural Science Foundation of China (U20A2017), the Strategic Priority Research Program of the Chinese Academy of Science (XDBS01030100), and the Shenzhen-Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions (NYKFKT2019009), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Dai or Shintaro Funahashi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Wu, J., Dai, J. et al. The Mechanism for Allocating Limited Working Memory Resources in Multitasking. Neurosci. Bull. 38, 829–833 (2022). https://doi.org/10.1007/s12264-022-00853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00853-6

Navigation