Skip to main content
Log in

Referred Somatic Hyperalgesia Mediates Cardiac Regulation by the Activation of Sympathetic Nerves in a Rat Model of Myocardial Ischemia

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Myocardial ischemia (MI) causes somatic referred pain and sympathetic hyperactivity, and the role of sensory inputs from referred areas in cardiac function and sympathetic hyperactivity remain unclear. Here, in a rat model, we showed that MI not only led to referred mechanical hypersensitivity on the forelimbs and upper back, but also elicited sympathetic sprouting in the skin of the referred area and C8–T6 dorsal root ganglia, and increased cardiac sympathetic tone, indicating sympathetic-sensory coupling. Moreover, intensifying referred hyperalgesic inputs with noxious mechanical, thermal, and electro-stimulation (ES) of the forearm augmented sympathetic hyperactivity and regulated cardiac function, whereas deafferentation of the left brachial plexus diminished sympathoexcitation. Intradermal injection of the α2 adrenoceptor (α2AR) antagonist yohimbine and agonist dexmedetomidine in the forearm attenuated the cardiac adjustment by ES. Overall, these findings suggest that sensory inputs from the referred pain area contribute to cardiac functional adjustment via peripheral α2AR-mediated sympathetic-sensory coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr Physiol 2015, 5: 929–960.

    Article  PubMed  Google Scholar 

  2. Crea F. Doctor, I feel microvascular chest pain. Eur Heart J 2020, 41: 3219–3221.

    Article  PubMed  Google Scholar 

  3. Hobbs SF, Chandler MJ, Bolser DC, Foreman RD. Segmental organization of visceral and somatic input onto C3–T6 spinothalamic tract cells of the monkey. J Neurophysiol 1992, 68: 1575–1588.

    Article  CAS  PubMed  Google Scholar 

  4. Blair RW, Weber RN, Foreman RD. Characteristics of primate spinothalamic tract neurons receiving viscerosomatic convergent inputs in T3–T5 segments. J Neurophysiol 1981, 46: 797–811.

    Article  CAS  PubMed  Google Scholar 

  5. Blair RW, Ammons WS, Foreman RD. Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. J Neurophysiol 1984, 51: 636–648.

    Article  CAS  PubMed  Google Scholar 

  6. Foreman RD, Blair RW, Weber RN. Viscerosomatic convergence onto T2–T4 spinoreticular, spinoreticular-spinothalamic, and spinothalamic tract neurons in the cat. Exp Neurol 1984, 85: 597–619.

    Article  CAS  PubMed  Google Scholar 

  7. Ammons WS, Girardot MN, Foreman RD. T2–T5 spinothalamic neurons projecting to medial thalamus with viscerosomatic input. J Neurophysiol 1985, 54: 73–89.

    Article  CAS  PubMed  Google Scholar 

  8. Vance WH, Bowker RC. Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res 1983, 258: 96–100.

    Article  CAS  PubMed  Google Scholar 

  9. Quigg M, Elfvin LG, Aldskogius H. Distribution of cardiac sympathetic afferent fibers in the Guinea pig heart labeled by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Auton Nerv Syst 1988, 25: 107–118.

    Article  CAS  PubMed  Google Scholar 

  10. Craig AD. A new view of pain as a homeostatic emotion. Trends Neurosci 2003, 26: 303–307.

    Article  CAS  PubMed  Google Scholar 

  11. Jones WK, Fan GC, Liao SY, Zhang JM, Wang Y, Weintraub NL. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 2009, 120: S1–S9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Basalay M, Barsukevich V, Mastitskaya S, Mrochek A, Pernow J, Sjöquist PO, et al. Remote ischaemic pre- and delayed postconditioning - similar degree of cardioprotection but distinct mechanisms. Exp Physiol 2012, 97: 908–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zekios KC, Mouchtouri ET, Lekkas P, Nikas DN, Kolettis TM. Sympathetic activation and arrhythmogenesis after myocardial infarction: Where do we stand? J Cardiovasc Dev Dis 2021, 8: 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manousiouthakis E, Mendez M, Garner MC, Exertier P, Makita T. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat Commun 2014, 5: 3918.

    Article  CAS  PubMed  Google Scholar 

  15. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res 2014, 114: 1815–1826.

    Article  CAS  PubMed  Google Scholar 

  16. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 2014, 114: 1004–1021.

    Article  CAS  PubMed  Google Scholar 

  17. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 2001, 50: 409–416.

    Article  CAS  PubMed  Google Scholar 

  18. Yokoyama T, Lee JK, Miwa K, Opthof T, Tomoyama S, Nakanishi H, et al. Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS One 2017, 12: e0182072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yoshie K, Rajendran PS, Massoud L, Mistry J, Swid MA, Wu XH, et al. Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction. JCI Insight 2020, 5: 124477.

    Article  PubMed  Google Scholar 

  20. McLachlan EM, Jänig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root Ganglia. Nature 1993, 363: 543–546.

    Article  CAS  PubMed  Google Scholar 

  21. Chung K, Lee BH, Yoon YW, Chung JM. Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model. J Comp Neurol 1996, 376: 241–252.

    Article  CAS  PubMed  Google Scholar 

  22. Nascimento FP, Magnussen C, Yousefpour N, Ribeiro-da-Silva A. Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain. Mol Pain 2015, 11: 59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wu JR, Chen H, Yao YY, Zhang MM, Jiang K, Zhou B, et al. Local injection to sciatic nerve of dexmedetomidine reduces pain behaviors, SGCs activation, NGF expression and sympathetic sprouting in CCI rats. Brain Res Bull 2017, 132: 118–128.

    Article  CAS  PubMed  Google Scholar 

  24. Moon DE, Lee DH, Han HC, Xie JG, Coggeshall RE, Chung JM. Adrenergic sensitivity of the sensory receptors modulating mechanical allodynia in a rat neuropathic pain model. Pain 1999, 80: 589–595.

    Article  CAS  PubMed  Google Scholar 

  25. Ogon I, Takebayashi T, Miyakawa T, Iwase T, Tanimoto K, Terashima Y, et al. Suppression of sympathetic nerve sprouting by local administration of an α-antagonist around the dorsal root ganglion in a lumbar radiculopathy model. Spine (Phila Pa 1976) 2018, 43: E321–E326.

  26. Ogon I, Takebayashi T, Iwase T, Emori M, Tanimoto K, Miyakawa T, et al. Sympathectomy and sympathetic blockade reduce pain behavior via alpha-2 adrenoceptor of the dorsal root ganglion neurons in a lumbar radiculopathy model. Spine (Phila Pa 1976) 2015, 40: E1269–E1275.

  27. de Couto G, Liu WX, Tseliou E, Sun BM, Makkar N, Kanazawa H, et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 2015, 125: 3147–3162.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lim M, Wang WQ, Liang L, Han ZB, Li ZJ, Geng J, et al. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 2018, 9: 129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang YH, Han S, Li XX, Xie YK, Zhu B, Gao XY, et al. Cutaneous hypersensitivity as an indicator of visceral inflammation via C-nociceptor axon bifurcation. Neurosci Bull 2021, 37: 45–54.

    Article  CAS  PubMed  Google Scholar 

  30. Lee MT, Chen YH, Mackie K, Chiou LC. Median nerve stimulation as a nonpharmacological approach to bypass analgesic tolerance to morphine: A proof-of-concept study in mice. J Pain 2021, 22: 300–312.

    Article  CAS  PubMed  Google Scholar 

  31. Azhar A, El-Bassossy HM. Pentoxifylline alleviates cardiac ischemia and dysfunction following experimental angina in insulin resistance. PLoS One 2014, 9: e98281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hedger JH, Webber RH. Anatomical study of the cervical sympathetic trunk and ganglia in the albino rat (Mus norvegicus albinus). Acta Anat (Basel) 1976, 96: 206–217.

    Article  CAS  Google Scholar 

  33. Li B, Hu YL, Li XZ, Jin GQ, Chen XQ, Chen GJ, et al. Sirt1 antisense long noncoding RNA promotes cardiomyocyte proliferation by enhancing the stability of Sirt1. J Am Heart Assoc 2018, 7: e009700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaufman A, Sato A, Sato Y, Sugimoto H. Reflex changes in heart rate after mechanical and thermal stimulation of the skin at various segmental levels in cats. Neuroscience 1977, 2: 103–109.

    Article  CAS  PubMed  Google Scholar 

  35. Kimura A, Ohsawa H, Sato A, Sato Y. Somatocardiovascular reflexes in anesthetized rats with the central nervous system intact or acutely spinalized at the cervical level. Neurosci Res 1995, 22: 297–305.

    Article  CAS  PubMed  Google Scholar 

  36. Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, Choi CB, et al. A proposed transpositional acupoint system in a mouse and rat model. Res Vet Sci 2008, 84: 159–165.

    Article  PubMed  Google Scholar 

  37. Bobkiewicz A, Cwykiel J, Siemionow M. Anatomic variations of brachial and lumbosacral plexus models in different rat strains. Microsurgery 2017, 37: 327–333.

    Article  PubMed  Google Scholar 

  38. Bharali LAM, Lisney SJW. The relationship between unmyelinated afferent type and neurogenic plasma extravasation in normal and reinnervated rat skin. Neuroscience 1992, 47: 703–712.

    Article  CAS  PubMed  Google Scholar 

  39. Kuo DC, Oravitz JJ, DeGroat WC. Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 1984, 321: 111–118.

    Article  CAS  PubMed  Google Scholar 

  40. Xie WR, Strong JA, Zhang JM. Increased excitability and spontaneous activity of rat sensory neurons following in vitro stimulation of sympathetic fiber sprouts in the isolated dorsal root ganglion. Pain 2010, 151: 447–459.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang JM, Li HQ, Munir MA. Decreasing sympathetic sprouting in pathologic sensory ganglia: A new mechanism for treating neuropathic pain using lidocaine. Pain 2004, 109: 143–149.

    Article  CAS  PubMed  Google Scholar 

  42. Wang YL, Su YS, He W, Jing XH. Electroacupuncture relieved visceral and referred hindpaw hypersensitivity in colitis rats by inhibiting tyrosine hydroxylase expression in the sixth lumbar dorsal root ganglia. Neuropeptides 2019, 77: 101957.

    Article  CAS  PubMed  Google Scholar 

  43. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, et al. Nerve sprouting and sudden cardiac death. Circ Res 2000, 86: 816–821.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan Y, Jiang ZL, Zhao Y, Tsai WC, Patel J, Chen LS, et al. Long-term intermittent high-amplitude subcutaneous nerve stimulation reduces sympathetic tone in ambulatory dogs. Heart Rhythm 2018, 15: 451–459.

    Article  PubMed  Google Scholar 

  45. Yuan Y, Zhao Y, Wong J, Tsai WC, Jiang ZL, Kabir RA, et al. Subcutaneous nerve stimulation reduces sympathetic nerve activity in ambulatory dogs with myocardial infarction. Heart Rhythm 2020, 17: 1167–1175.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gil DW, Wang J, Gu C, Donello JE, Cabrera S, Al-Chaer ED. Role of sympathetic nervous system in rat model of chronic visceral pain. Neurogastroenterol Motil 2016, 28: 423–431.

    Article  CAS  PubMed  Google Scholar 

  47. Hein L, Altman JD, Kobilka BK. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature 1999, 402: 181–184.

    Article  CAS  PubMed  Google Scholar 

  48. Ogon I, Takebayashi T, Miyakawa T, Iwase T, Tanimoto K, Terashima Y, et al. Attenuation of pain behaviour by local administration of alpha-2 adrenoceptor antagonists to dorsal root Ganglia in a rat radiculopathy model. Eur J Pain 2016, 20: 790–799.

    Article  CAS  PubMed  Google Scholar 

  49. McNeill DL, Burden HW. Convergence of sensory processes from the heart and left ulnar nerve onto a single afferent perikaryon: A neuroanatomical study in the rat employing fluorescent tracers. Anat Rec 1986, 214: 441–444.

    Article  CAS  PubMed  Google Scholar 

  50. Luz LL, Fernandes EC, Sivado M, Kokai E, Szucs P, Safronov BV. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in Lamina I. Pain 2015, 156: 2042–2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Løvlien M, Schei B, Gjengedal E. Are there gender differences related to symptoms of acute myocardial infarction? A Norwegian perspective. Prog Cardiovasc Nurs 2006, 21: 14–19.

    Article  PubMed  Google Scholar 

  52. Ferrell WR, Russell NJ. Extravasation in the knee induced by antidromic stimulation of articular C fibre afferents of the anaesthetized cat. J Physiol 1986, 379: 407–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang M, Guo HY, Ma YY, Xu FF, Bai FH, Liang SR, et al. Acupoint sensitization is associated with increased excitability and hyperpolarization-activated current (ih) in C- but not Aδ-type neurons. Neuroscience 2019, 404: 499–509.

    Article  CAS  PubMed  Google Scholar 

  54. Sorkin LS, Eddinger KA, Woller SA, Yaksh TL. Origins of antidromic activity in sensory afferent fibers and neurogenic inflammation. Semin Immunopathol 2018, 40: 237–247.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Uchida S, Kagitani F, Sato-Suzuki I. Somatoautonomic reflexes in acupuncture therapy: A review. Auton Neurosci 2017, 203: 1–8.

    Article  PubMed  Google Scholar 

  56. Fu LW, Longhurst JC. A new function for ATP: Activating cardiac sympathetic afferents during myocardial ischemia. Am J Physiol Heart Circ Physiol 2010, 299: H1762–H1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schomig A, Haass M, Richardt G. Catecholamine release and arrhythmias in acute myocardial ischaemia. Eur Heart J 1991, 12: 38–47.

    Article  PubMed  Google Scholar 

  58. Kolettis TM, Kontonika M, Barka E, Daskalopoulos EP, Baltogiannis GG, Tourmousoglou C, et al. Central sympathetic activation and arrhythmogenesis during acute myocardial infarction: Modulating effects of endothelin-B receptors. Front Cardiovasc Med 2015, 2: 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Raja SN. Role of the sympathetic nervous system in acute pain and inflammation. Ann Med 1995, 27: 241–246.

    Article  CAS  PubMed  Google Scholar 

  60. Kingma JG, Simard D, Rouleau JR. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection. World J Cardiol 2017, 9: 508.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Deng Y, Tan X, Li ML, Wang WZ, Wang YK. Angiotensin-converting enzyme 2 in the rostral ventrolateral medulla regulates cholinergic signaling and cardiovascular and sympathetic responses in hypertensive rats. Neurosci Bull 2019, 35: 67–78.

    Article  CAS  PubMed  Google Scholar 

  62. Sato A, Schmidt RF. Somatosympathetic reflexes: Afferent fibers, central pathways, discharge characteristics. Physiol Rev 1973, 53: 916–947.

    Article  CAS  PubMed  Google Scholar 

  63. Noguchi E, Ohsawa H, Kobayashi S, Shimura M, Uchida S, Sato Y. The effect of electro-acupuncture stimulation on the muscle blood flow of the hindlimb in anesthetized rats. J Auton Nerv Syst 1999, 75: 78–86.

    Article  CAS  PubMed  Google Scholar 

  64. Hausenloy DJ, Erik BH, Peter F, Gerd H, André NG, Andrew R, et al. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 2019, 115: 1167–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wan JY, Chen M, Yuan Y, Wang Z, Shen CY, Fishbein MC, et al. Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs. Heart Rhythm 2019, 16: 1251–1260.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther 2012, 14: R101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grelik C, Bennett GJ, Ribeiro-da-Silva A. Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur J Neurosci 2005, 21: 2475–2487.

    Article  CAS  PubMed  Google Scholar 

  68. Marfurt CF, Ellis LC, Jones MA. Sensory and sympathetic nerve sprouting in the rat cornea following neonatal administration of capsaicin. Somatosens Mot Res 1993, 10: 377–398.

    Article  CAS  PubMed  Google Scholar 

  69. Liem L, van Dongen E, Huygen FJ, Staats P, Kramer J. The dorsal root ganglion as a therapeutic target for chronic pain. Reg Anesth Pain Med 2016, 41: 511–519.

    Article  PubMed  Google Scholar 

  70. Chung K, Yoon YW, Chung JM. Sprouting sympathetic fibers form synaptic varicosities in the dorsal root ganglion of the rat with neuropathic injury. Brain Res 1997, 751: 275–280.

    Article  CAS  PubMed  Google Scholar 

  71. Xie WR, Strong JA, Mao JX, Zhang JM. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse. Mol Pain 2011, 7: 1744–8069.

    Article  CAS  Google Scholar 

  72. Yin J, Wang Y, Hu HS, Li XL, Xue M, Cheng WJ, et al. P2X7receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarctionviathe NLRP3/IL-1β pathway. J Cell Mol Med 2017, 21: 2695–2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kong FJ, Liu SM, Xu CS, Liu J, Li GD, Li GL, et al. Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical Ganglia after myocardial ischemic injury. Neurochem Int 2013, 63: 230–237.

    Article  CAS  PubMed  Google Scholar 

  74. Sikandar S, Dickenson AH. Visceral pain: The ins and outs, the ups and Downs. Curr Opin Support Palliat Care 2012, 6: 17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Devor M, Janig W, Michaelis M. Modulation of activity in dorsal root ganglion neurons by sympathetic activation in nerve-injured rats. J Neurophysiol 1994, 71: 38–47.

    Article  CAS  PubMed  Google Scholar 

  76. Peirs C, Seal RP. Neural circuits for pain: Recent advances and current views. Science 2016, 354: 578–584.

    Article  CAS  PubMed  Google Scholar 

  77. Yuan Y, Liu X, Wan JY, Wong J, Bedwell AA, Persohn SA, et al. Subcutaneous nerve stimulation for rate control in ambulatory dogs with persistent atrial fibrillation. Heart Rhythm 2019, 16: 1383–1391.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stavrakis S, Humphrey MB, Scherlag BJ, Hu YQ, Jackman WM, Nakagawa H, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol 2015, 65: 867–875.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lomuscio A, Belletti S, Battezzati PM, Lombardi F. Efficacy of acupuncture in preventing atrial fibrillation recurrences after electrical cardioversion. J Cardiovasc Electrophysiol 2011, 22: 241–247.

    Article  PubMed  Google Scholar 

  80. Brumovsky PR. Dorsal root ganglion neurons and tyrosine hydroxylase—an intriguing association with implications for sensation and pain. Pain 2016, 157: 314–320.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Haifa Qiao of Shaanxi University of Chinese Medicine and Dr. Yun Guan of Johns Hopkins University School of Medicine for constructive comments on an earlier version of the manuscript. We thank Dr. Wanzhu Bai, Dongsheng Xu, and Yangshuai Su of the Institute of Acupuncture and Moxibustion of the China Academy of Chinese Medical Sciences for technical assistance. This work was supported by the National Key R&D Program of China (2018YFC1704600) and the National Natural Science Foundation of China (81674085, 81904309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Zhu or Xinyan Gao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Sun, G., Cao, H. et al. Referred Somatic Hyperalgesia Mediates Cardiac Regulation by the Activation of Sympathetic Nerves in a Rat Model of Myocardial Ischemia. Neurosci. Bull. 38, 386–402 (2022). https://doi.org/10.1007/s12264-022-00841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00841-w

Keywords

Navigation