Skip to main content

O-GlcNAcylation in Ventral Tegmental Area Dopaminergic Neurons Regulates Motor Learning and the Response to Natural Reward

Abstract

Protein O-GlcNAcylation is a post-translational modification that links environmental stimuli with changes in intracellular signal pathways, and its disturbance has been found in neurodegenerative diseases and metabolic disorders. However, its role in the mesolimbic dopamine (DA) system, especially in the ventral tegmental area (VTA), needs to be elucidated. Here, we found that injection of Thiamet G, an O-GlcNAcase (OGA) inhibitor, in the VTA and nucleus accumbens (NAc) of mice, facilitated neuronal O-GlcNAcylation and decreased the operant response to sucrose as well as the latency to fall in rotarod test. Mice with DAergic neuron-specific knockout of O-GlcNAc transferase (OGT) displayed severe metabolic abnormalities and died within 4–8 weeks after birth. Furthermore, mice specifically overexpressing OGT in DAergic neurons in the VTA had learning defects in the operant response to sucrose, and impaired motor learning in the rotarod test. Instead, overexpression of OGT in GABAergic neurons in the VTA had no effect on these behaviors. These results suggest that protein O-GlcNAcylation of DAergic neurons in the VTA plays an important role in regulating the response to natural reward and motor learning in mice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518: 197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Addy NA, Nunes EJ, Wickham RJ. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test. Behav Brain Res 2015, 288: 54–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Clarke R, Adermark L. Dopaminergic regulation of striatal interneurons in reward and addiction: Focus on alcohol. Neural Plast 2015, 2015: 814567.

  4. 4.

    Derman RC, Ferrario CR. Enhanced incentive motivation in obesity-prone rats is mediated by NAc core CP-AMPARs. Neuropharmacology 2018, 131: 326–336.

    CAS  PubMed  Google Scholar 

  5. 5.

    Buschman TJ, Kastner S. From behavior to neural dynamics: An integrated theory of attention. Neuron 2015, 88: 127–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Elabd S, Sabry I. Two birds with one stone: Possible dual-role of oxytocin in the treatment of diabetes and osteoporosis. Front Endocrinol (Lausanne) 2015, 6: 121.

    Google Scholar 

  7. 7.

    Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003, 6: 968–973.

    CAS  PubMed  Google Scholar 

  8. 8.

    Wang XF, Liu JJ, Xia JL, Liu J, Mirabella V, Pang ZP. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep 2015, 12: 726–733.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ferrario CR, Labouèbe G, Liu S, Nieh EH, Routh VH, Xu SJ, et al. Homeostasis meets motivation in the battle to control food intake. J Neurosci 2016, 36: 11469–11481.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Li Y, Liu HT, Xu QS, Du YG, Xu J. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response. Carbohydr Polym 2014, 99: 568–578.

    CAS  PubMed  Google Scholar 

  11. 11.

    Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007, 446: 1017–1022.

    CAS  PubMed  Google Scholar 

  12. 12.

    Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011, 80: 825–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gao J, Yang Y, Qiu RF, Zhang K, Teng X, Liu RQ, et al. Proteomic analysis of the OGT interactome: Novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Carcinogenesis 2018, 39: 1222–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bond MR, Hanover JA. O-GlcNAc cycling: A link between metabolism and chronic disease. Annu Rev Nutr 2013, 33: 205–229.

    CAS  PubMed  Google Scholar 

  15. 15.

    Lagerlöf O, Slocomb JE, Hong I, Aponte Y, Blackshaw S, Hart GW, et al. The nutrient sensor OGT in PVN neurons regulates feeding. Science 2016, 351: 1293–1296.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lagerlöf O. O-GlcNAc cycling in the developing, adult and geriatric brain. J Bioenerg Biomembr 2018, 50: 241–261.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schwartz GJ. A satiating signal. Science 2016, 351: 1268–1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 2014, 158: 198–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Wang ZL, Jin T, Le QM, Liu C, Wang XY, Wang FF, et al. Retrieval-driven hippocampal NPTX2 plasticity facilitates the extinction of cocaine-associated context memory. Biol Psychiatry 2020, 87: 979–991.

    CAS  PubMed  Google Scholar 

  20. 20.

    Laque A, Yu S, Qualls-Creekmore E, Gettys S, Schwartzenburg C, Bui K, et al. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 2015, 4: 706–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lee BE, Kim HY, Kim HJ, Jeong H, Kim BG, Lee HE, et al. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain 2020, 143: 3699–3716.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 2014, 522: 3308–3334.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kempadoo KA, Tourino C, Cho SL, Magnani F, Leinninger GM, Stuber GD, et al. Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci 2013, 33: 7618–7626.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 2016, 90: 1286–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Moran TH. Hypothalamic nutrient sensing and energy balance. Forum Nutr 2010, 63: 94–101.

    CAS  PubMed  Google Scholar 

  26. 26.

    Mistlberger RE. Neurobiology of food anticipatory circadian rhythms. Physiol Behav 2011, 104: 535–545.

    CAS  PubMed  Google Scholar 

  27. 27.

    Burnett CJ, Li C, Webber E, Tsaousidou E, Xue SY, Brüning JC, et al. Hunger-driven motivational state competition. Neuron 2016, 92: 187–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Li CH, Hou YJ, Zhang J, Sui GZ, Du XL, Licinio J, et al. AGRP neurons modulate fasting-induced anxiolytic effects. Transl Psychiatry 2019, 9: 111.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Robinson MJ, Berridge KC. Instant transformation of learned repulsion into motivational “wanting.” Curr Biol 2013, 23: 282–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Taylor RP, Parker GJ, Hazel MW, Soesanto Y, Fuller W, Yazzie MJ, et al. Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J Biol Chem 2008, 283: 6050–6057.

    CAS  PubMed  Google Scholar 

  31. 31.

    Taylor RP, Geisler TS, Chambers JH, McClain DA. Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J Biol Chem 2009, 284: 3425–3432.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lagerlöf O, Hart GW, Huganir RL. O-GlcNAc transferase regulates excitatory synapse maturity. Proc Natl Acad Sci USA 2017, 114: 1684–1689.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Taylor EW, Wang K, Nelson AR, Bredemann TM, Fraser KB, Clinton SM, et al. O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J Neurosci 2014, 34: 10–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012, 148: 1145–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pekkurnaz G, Trinidad JC, Wang XN, Kong D, Schwarz TL. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 2014, 158: 54–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Su C, Schwarz TL. O-GlcNAc transferase is essential for sensory neuron survival and maintenance. J Neurosci 2017, 37: 2125–2136.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, et al. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 2014, 159: 306–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang SJ, Tan Y, Zhang JE, Luo MM. Pharmacogenetic activation of midbrain dopaminergic neurons induce hyperactivity. Neurosci Bull 2013, 29: 517–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Brunton PJ, Russell JA. The expectant brain: Adapting for motherhood. Nat Rev Neurosci 2008, 9: 11–25.

    CAS  PubMed  Google Scholar 

  40. 40.

    Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized Nexus for dysfunctional peripheral immunity and signaling in Parkinson’s Disease. Brain Behav Immun 2018, 70: 21–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 2012, 482: 85–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Pan WX, Brown J, Dudman JT. Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain. Nat Neurosci 2013, 16: 71–78.

    CAS  PubMed  Google Scholar 

  43. 43.

    Eshel N, Bukwich M, Rao V, Hemmelder V, Tian J, Uchida N. Erratum: Arithmetic and local circuitry underlying dopamine prediction errors. Nature 2015, 527: 398.

    CAS  PubMed  Google Scholar 

  44. 44.

    Cornejo MP, Barrile F, de Francesco PN, Portiansky EL, Reynaldo M, Perello M. Ghrelin recruits specific subsets of dopamine and GABA neurons of different ventral tegmental area sub-nuclei. Neuroscience 2018, 392: 107–120.

    CAS  PubMed  Google Scholar 

  45. 45.

    Wei XJ, Sun B, Chen K, Lv B, Luo X, Yan JQ. Ghrelin signaling in the ventral tegmental area mediates both reward-based feeding and fasting-induced hyperphagia on high-fat diet. Neuroscience 2015, 300: 53–62.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31871021, 82021002, 31930046, and 32000671), the China Postdoctoral Science Foundation (2020M670978 and 2021T140127), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), and ZhangJiang Lab.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lan Ma or Fei-Fei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, MS., Yang, X., Zhang, CC. et al. O-GlcNAcylation in Ventral Tegmental Area Dopaminergic Neurons Regulates Motor Learning and the Response to Natural Reward. Neurosci. Bull. (2021). https://doi.org/10.1007/s12264-021-00776-8

Download citation

Keywords

  • O-GlcNAcylation
  • Dopaminergic neurons
  • Natural reward
  • Motor learning