Skip to main content

Simvastatin Blocks Reinstatement of Cocaine-induced Conditioned Place Preference in Male Mice with Brain Lipidome Remodeling

Abstract

Drug-associated reward memories are conducive to intense craving and often trigger relapse. Simvastatin has been shown to regulate lipids that are involved in memory formation but its influence on other cognitive processes is elusive. Here, we used a mass spectrometry-based lipidomic method to evaluate the impact of simvastatin on the mouse brain in a cocaine-induced reinstatement paradigm. We found that simvastatin blocked the reinstatement of cocaine-induced conditioned place preference (CPP) without affecting CPP acquisition. Specifically, only simvastatin administered during extinction prevented cocaine-primed reinstatement. Global lipidome analysis showed that the nucleus accumbens was the region with the greatest degree of change caused by simvastatin. The metabolism of fatty-acids, phospholipids, and triacylglycerol was profoundly affected. Simvastatin reversed most of the effects on phospholipids induced by cocaine. The correlation matrix showed that cocaine and simvastatin significantly reshaped the lipid metabolic pathways in specific brain regions. Furthermore, simvastatin almost reversed all changes in the fatty acyl profile and unsaturation caused by cocaine. In summary, pre-extinction treatment with simvastatin facilitates cocaine extinction and prevents cocaine relapse with brain lipidome remodeling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Taylor JR, Olausson P, Quinn JJ, Torregrossa MM. Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 2009, 56: 186–195.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Sartor GC, Aston-Jones G. Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology 2014, 39: 1059–1065.

    PubMed  Article  Google Scholar 

  3. 3.

    Chen YY, Zhang LB, Li Y, Meng SQ, Gong YM, Lu L. Post-retrieval extinction prevents reconsolidation of methamphetamine memory traces and subsequent reinstatement of methamphetamine seeking. Front Mol Neurosci 2019, 12: 157.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020, 77: 3745–3768.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Conklin CA, Tiffany ST. Applying extinction research and theory to cue-exposure addiction treatments. Addiction 2002, 97: 155–167.

    PubMed  Article  Google Scholar 

  6. 6.

    Mellentin AI, Skøt L, Nielsen B, Schippers GM, Nielsen AS, Stenager E, et al. Cue exposure therapy for the treatment of alcohol use disorders: A meta-analytic review. Clin Psychol Rev 2017, 57: 195–207.

    PubMed  Article  Google Scholar 

  7. 7.

    Zhang XY, Li Q, Dong Y, Yan W, Song K, Lin YQ, et al. Mu-opioid receptors expressed in glutamatergic neurons are essential for morphine withdrawal. Neurosci Bull 2020, 36: 1095–1106.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Hillard CJ. Lipids and drugs of abuse. Life Sci 2005, 77: 1531–1542.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Fabelo N, Martín V, Santpere G, Marín R, Torrent L, Ferrer I, et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 2011, 17: 1107–1118.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Ghosh S, Dyer RA, Beasley CL. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 2017, 95: 135–142.

    PubMed  Article  Google Scholar 

  11. 11.

    Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement 2017, 13: 810–827.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Furuyashiki T, Akiyama S, Kitaoka S. Roles of multiple lipid mediators in stress and depression. Int Immunol 2019, 31: 579–587.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP. Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017, 76: 336–362.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Leishman E, Murphy M, Mackie K, Bradshaw HB. Δ9-Tetrahydrocannabinol changes the brain lipidome and transcriptome differentially in the adolescent and the adult. Biochim Biophys Acta Mol Cell Biol Lipids 2018, 1863: 479–492.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Wang L, Li ML, Bu Q, Li HC, Xu W, Liu CQ, et al. Chronic alcohol causes alteration of lipidome profiling in brain. Toxicol Lett 2019, 313: 19–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Lin YY, Gu H, Jiang LH, Xu W, Liu CQ, Li Y, et al. Cocaine modifies brain lipidome in mice. Mol Cell Neurosci 2017, 85: 29–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Li H, Xu W, Jiang L, Gu H, Li M, Zhang J, et al. Lipidomic signature of serum from the rats exposed to alcohol for one year. Toxicol Lett 2018, 294: 166–176.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Jiang L, Gu H, Lin Y, Xu W, Zhu R, Kong J, et al. Remodeling of brain lipidome in methamphetamine-sensitized mice. Toxicol Lett 2017, 279: 67–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, et al. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell 2019, 24: 363-375.e9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Külzow N, Witte AV, Kerti L, Grittner U, Schuchardt JP, Hahn A, et al. Impact of Omega-3 fatty acid supplementation on memory functions in healthy older adults. J Alzheimers Dis 2016, 51: 713–725.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 2014, 20: 415–418.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Bradley RM, Mardian EB, Bloemberg D, Aristizabal Henao JJ, Mitchell AS, Marvyn PM, et al. Mice deficient in lysophosphatidic acid acyltransferase delta (Lpaatδ)/acylglycerophosphate acyltransferase 4 (Agpat4) have impaired learning and memory. Mol Cell Biol 2017, 37: e00245–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Muldoon MF, Ryan CM, Sheu L, Yao JK, Conklin SM, Manuck SB. Serum phospholipid docosahexaenonic acid is associated with cognitive functioning during middle adulthood. J Nutr 2010, 140: 848–853.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Catalão CHR, Santos-Júnior NN, da Costa LHA, Souza AO, Alberici LC, Rocha MJA. Brain oxidative stress during experimental Sepsis is attenuated by simvastatin administration. Mol Neurobiol 2017, 54: 7008–7018.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Can ÖD, Ulupınar E, Özkay ÜD, Yegin B, Öztürk Y. The effect of simvastatin treatment on behavioral parameters, cognitive performance, and hippocampal morphology in rats fed a standard or a high-fat diet. Behav Pharmacol 2012, 23: 582–592.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Douma TN, Borre Y, Hendriksen H, Olivier B, Oosting RS. Simvastatin improves learning and memory in control but not in olfactory bulbectomized rats. Psychopharmacology (Berl) 2011, 216: 537–544.

    CAS  Article  Google Scholar 

  27. 27.

    Beisse F, Diem R. Immunomodulation and neuroprotection in optic neuritis. Ophthalmologe 2016, 113: 398–401.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Fisher M, Moonis M. Neuroprotective effects of statins: Evidence from preclinical and clinical studies. Curr Treat Options Cardiovasc Med 2012, 14: 252–259.

    PubMed  Article  Google Scholar 

  29. 29.

    Gao K, Wang G, Wang Y, Han D, Bi J, Yuan Y, et al. Neuroprotective effect of simvastatin via inducing the autophagy on spinal cord injury in the rat model. Biomed Res Int 2015, 2015: 260161.

  30. 30.

    Zhi WH, Zeng YY, Lu ZH, Qu WJ, Chen WX, Chen L, et al. Simvastatin exerts antiamnesic effect in Aβ25-35-injected mice. CNS Neurosci Ther 2014, 20: 218–226.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Parent MA, Hottman DA, Cheng S, Zhang W, McMahon LL, Yuan LL, et al. Simvastatin treatment enhances NMDAR-mediated synaptic transmission by upregulating the surface distribution of the GluN2B subunit. Cell Mol Neurobiol 2014, 34: 693–705.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Métais C, Brennan K, Mably AJ, Scott M, Walsh DM, Herron CE. Simvastatin treatment preserves synaptic plasticity in AβPPswe/PS1dE9 mice. J Alzheimers Dis 2014, 39: 315–329.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Maggo S, Ashton JC. Effects of HMG-CoA reductase inhibitors on learning and memory in the Guinea pig. Eur J Pharmacol 2014, 723: 294–304.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Chauvet C, Nicolas C, Lafay-Chebassier C, Jaber M, Thiriet N, Solinas M. Statins reduce the risks of relapse to addiction in rats. Neuropsychopharmacology 2016, 41: 1588–1597.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Xu W, Li H, Wang L, Zhang J, Liu C, Wan X, et al. Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice. Nat Commun 2020, 11: 5962.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Cuesta S, Funes A, Pacchioni AM. Social isolation in male rats during adolescence inhibits the wnt/β-catenin pathway in the prefrontal cortex and enhances anxiety and cocaine-induced plasticity in adulthood. Neurosci Bull 2020, 36: 611–624.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Wang X, Luo YX, He YY, Li FQ, Shi HS, Xue LF, et al. Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J Neurosci 2010, 30: 12632–12641.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Liu ZQ, Gu XH, Yang YJ, Yin XP, Xu LJ, Wang W. D-Serine in the nucleus accumbens region modulates behavioral sensitization and extinction of conditioned place preference. Pharmacol Biochem Behav 2016, 143: 44–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Ren ZY, Liu MM, Xue YX, Ding ZB, Xue LF, Zhai SD, et al. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology 2013, 38: 778–790.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Lv XF, Xu Y, Han JS, Cui CL. Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Behav Brain Res 2011, 223: 182–191.

  41. 41.

    Yang J, Dong H, Hammock BD. Profiling the regulatory lipids: Another systemic way to unveil the biological mystery. Curr Opin Lipidol 2011, 22: 197–203.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Svennerholm L. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 1968, 9: 570–579.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Ross BM, Moszczynska A, Peretti FJ, Adams V, Schmunk GA, Kalasinsky KS, et al. Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug Alcohol Depend 2002, 67: 73–79.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Kuge H, Akahori K, Yagyu KI, Honke K. Functional compartmentalization of the plasma membrane of neurons by a unique acyl chain composition of phospholipids. J Biol Chem 2014, 289: 26783–26793.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wang C, Feng R, Li Y, Zhang Y, Kang Z, Zhang W, et al. The metabolomic profiling of serum in rats exposed to arsenic using UPLC/Q-TOF MS. Toxicol Lett 2014, 229: 474–481.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Chen H, Cao G, Chen DQ, Wang M, Vaziri ND, Zhang ZH, et al. Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biol 2016, 10: 168–178.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Jia S, Guan T, Zhang X, Liu Y, Liu Y, Zhao X. Serum metabonomics analysis of quercetin against the toxicity induced by cadmium in rats. J Biochem Mol Toxicol 2020, 34: e22448.

  48. 48.

    Hosono T, Mouri A, Nishitsuji K, Jung CG, Kontani M, Tokuda H, et al. Arachidonic or docosahexaenoic acid diet prevents memory impairment in Tg2576 mice. J Alzheimers Dis 2015, 48: 149–162.

    PubMed  Article  Google Scholar 

  49. 49.

    Li C, Wang Q, Li L, Liu Y, Diao H. Arachidonic acid attenuates learning and memory dysfunction induced by repeated isoflurane anesthesia in rats. Int J Clin Exp Med 2015, 8: 12365–12373.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Li J, Jiao M, Wen J, Fan D, Xia Y, Cao Y, et al. Association of body mass index and blood lipid profile with cognitive function in Chinese elderly population based on data from the China Health and Nutrition Survey, 2009–2015. Psychogeriatrics 2020, 20: 663–672.

    PubMed  Article  Google Scholar 

  51. 51.

    Lauwers E, Goodchild R, Verstreken P. Membrane lipids in presynaptic function and disease. Neuron 2016, 90: 11–25.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (81871043 and 82071494), the National Science and Technology Major Project of China (2018ZX09201017 and 2018ZX09201018), and the 1·3·5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYGD18024).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Cen.

Ethics declarations

Conflict of interest

The authors claim that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, W., He, Y., Zhang, J. et al. Simvastatin Blocks Reinstatement of Cocaine-induced Conditioned Place Preference in Male Mice with Brain Lipidome Remodeling. Neurosci. Bull. (2021). https://doi.org/10.1007/s12264-021-00771-z

Download citation

Keywords

  • Simvastatin
  • Cocaine relapse
  • Extinction
  • Lipidome
  • Conditioned place preference