Skip to main content
Log in

The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The periaqueductal gray (PAG) is a complex mesencephalic structure involved in the integration and execution of active and passive self-protective behaviors against imminent threats, such as immobility or flight from a predator. PAG activity is also associated with the integration of responses against physical discomfort (e.g., anxiety, fear, pain, and disgust) which occurs prior an imminent attack, but also during withdrawal from drugs such as morphine and cocaine. The PAG sends and receives projections to and from other well-documented nuclei linked to the phenomenon of drug addiction including: (i) the ventral tegmental area; (ii) extended amygdala; (iii) medial prefrontal cortex; (iv) pontine nucleus; (v) bed nucleus of the stria terminalis; and (vi) hypothalamus. Preclinical models have suggested that the PAG contributes to the modulation of anxiety, fear, and nociception (all of which may produce physical discomfort) linked with chronic exposure to drugs of abuse. Withdrawal produced by the major pharmacological classes of drugs of abuse is mediated through actions that include participation of the PAG. In support of this, there is evidence of functional, pharmacological, molecular. And/or genetic alterations in the PAG during the impulsive/compulsive intake or withdrawal from a drug. Due to its small size, it is difficult to assess the anatomical participation of the PAG when using classical neuroimaging techniques, so its physiopathology in drug addiction has been underestimated and poorly documented. In this theoretical review, we discuss the involvement of the PAG in drug addiction mainly via its role as an integrator of responses to the physical discomfort associated with drug withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Association AAP. Diagnostic and statistical manual of mental disorders: DSM-V. 1994.

  2. Horseman C, Meyer A. Neurobiology of Addiction. Clin Obstet Gynecol 2019, 62: 118–127.

    Article  PubMed  Google Scholar 

  3. Gardner EL. Addiction and brain reward and antireward pathways. Adv Psychosom Med 2011, 30: 22–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koob GF. Addiction is a reward deficit and stress surfeit disorder. Front Psychiatry 2013, 4: 72.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ditre JW, Zale EL, LaRowe LR. A reciprocal model of pain and substance use: Transdiagnostic considerations, clinical implications, and future directions. Annu Rev Clin Psychol 2019, 15: 503–528.

    Article  PubMed  Google Scholar 

  6. Lee RSC, Hoppenbrouwers S, Franken I. A systematic meta-review of impulsivity and compulsivity in addictive behaviors. Neuropsychol Rev 2019, 29: 14–26.

    Article  PubMed  Google Scholar 

  7. Wise RA, Koob GF. The development and maintenance of drug addiction. Neuropsychopharmacology 2014, 39: 254–262.

    Article  PubMed  Google Scholar 

  8. Volkow ND, Li TK. Drug addiction: The neurobiology of behaviour gone awry. Nat Rev Neurosci 2004, 5: 963–970.

    Article  CAS  PubMed  Google Scholar 

  9. Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017, 122: 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: Change in hedonic set point. Science 1998, 282: 298–300.

    Article  CAS  PubMed  Google Scholar 

  11. Volkow ND, Fowler JS, Wang GJ. The addicted human brain: Insights from imaging studies. J Clin Invest 2003, 111: 1444–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McEwen BS. Sex, stress and the Hippocampus: Allostasis, allostatic load and the aging process. Neurobiol Aging 2002, 23: 921–939.

    Article  CAS  PubMed  Google Scholar 

  13. Koob GF, Schulkin J. Addiction and stress: An allostatic view. Neurosci Biobehav Rev 2019, 106: 245–262.

    Article  PubMed  Google Scholar 

  14. Bozarth MA, Wise RA. Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 1984, 224: 516–517.

    Article  CAS  PubMed  Google Scholar 

  15. Koob GF. Drug addiction: Hyperkatifeia/negative reinforcement as a framework for medications development. Pharmacol Rev 2021, 73: 163–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35: 217–238.

    Article  PubMed  Google Scholar 

  17. Koob GF. Negative reinforcement in drug addiction: The darkness within. Curr Opin Neurobiol 2013, 23: 559–563.

    Article  CAS  PubMed  Google Scholar 

  18. Koob GF. A role for brain stress systems in addiction. Neuron 2008, 59: 11–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol 2008, 59: 29–53.

    Article  PubMed  Google Scholar 

  20. Beitz AJ. Periaqueductal gray. In: Paxinos, G. (Ed.), The Rat Nervous System. 1994: 173–180.

  21. Brandão ML, Troncoso AC, de Souza Silva MA, Huston JP. The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: Empirical and conceptual considerations. Eur J Pharmacol 2003, 463: 225–233.

    Article  PubMed  CAS  Google Scholar 

  22. Graeff FG, Viana MB, Mora PO. Dual role of 5-HT in defense and anxiety. Neurosci Biobehav Rev 1997, 21: 791–799.

    Article  CAS  PubMed  Google Scholar 

  23. Graeff FG. Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 2004, 28: 239–259.

    Article  CAS  PubMed  Google Scholar 

  24. Blanchard DC, Canteras NS, Markham CM, Pentkowski NS, Blanchard RJ. Lesions of structures showing FOS expression to cat presentation: Effects on responsivity to a Cat, Cat odor, and nonpredator threat. Neurosci Biobehav Rev 2005, 29: 1243–1253.

    Article  PubMed  Google Scholar 

  25. Brandão ML, Borelli KG, Nobre MJ, Santos JM, Albrechet-Souza L, Oliveira AR. Gabaergic regulation of the neural organization of fear in the midbrain tectum. Neurosci Biobehav Rev 2005, 29: 1299–1311.

    Article  PubMed  CAS  Google Scholar 

  26. Brandão ML, Anseloni VZ, Pandóssio JE, de Araújo JE, Castilho VM. Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci Biobehav Rev 1999, 23: 863–875.

    Article  PubMed  Google Scholar 

  27. Borelli KG, Brandão ML. Effects of ovine CRF injections into the dorsomedial, dorsolateral and lateral columns of the periaqueductal gray: A functional role for the dorsomedial column. Horm Behav 2008, 53: 40–50.

    Article  CAS  PubMed  Google Scholar 

  28. Vázquez-León P, Ramírez-San Juan E, Marichal-Cancino BA, Campos-Rodríguez C, Chávez-Reyes J, Miranda-Páez A. NPY-Y1 receptors in dorsal periaqueductal gray modulate anxiety, alcohol intake, and relapse in Wistar rats. Pharmacol Biochem Behav 2020, 199: 173071.

  29. Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019, 177: 33–72.

    Article  PubMed  Google Scholar 

  30. Kittelberger JM, Land BR, Bass AH. Midbrain periaqueductal gray and vocal patterning in a teleost fish. J Neurophysiol 2006, 96: 71–85.

    Article  PubMed  Google Scholar 

  31. Kingsbury MA, Kelly AM, Schrock SE, Goodson JL. Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus. PLoS One 2011, 6: e20720. https://doi.org/10.1371/journal.pone.0020720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carrive P. The periaqueductal gray and defensive behavior: Functional representation and neuronal organization. Behav Brain Res 1993, 58: 27–47.

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds DV. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 1969, 164: 444–445.

    Article  CAS  PubMed  Google Scholar 

  34. Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 2002, 22: 2748–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lueptow LM, Fakira AK, Bobeck EN. The contribution of the descending pain modulatory pathway in opioid tolerance. Front Neurosci 2018, 12: 886.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Graeff FG. New perspective on the pathophysiology of panic: Merging serotonin and opioids in the periaqueductal gray. Revista Brasileira De Pesquisas Med E Biol 2012, 45: 366–375.

    CAS  Google Scholar 

  37. Nashold BS Jr, Wilson WP, Slaughter DG. Sensations evoked by stimulation in the midbrain of man. J Neurosurg 1969, 30: 14–24.

    Article  PubMed  Google Scholar 

  38. Lowery-Gionta EG, DiBerto J, Mazzone CM, Kash TL. GABA neurons of the ventral periaqueductal gray area modulate behaviors associated with anxiety and conditioned fear. Brain Struct Funct 2018, 223: 3787–3799.

    Article  CAS  PubMed  Google Scholar 

  39. Mota-Ortiz SR, Sukikara MH, Bittencourt JC, Baldo MV, Elias CF, Felicio LF, et al. The periaqueductal gray as a critical site to mediate reward seeking during predatory hunting. Behav Brain Res 2012, 226: 32–40.

    Article  PubMed  Google Scholar 

  40. Leite-Panissi CR, Coimbra NC, Menescal-de-Oliveira L. The cholinergic stimulation of the central amygdala modifying the tonic immobility response and antinociception in Guinea pigs depends on the ventrolateral periaqueductal gray. Brain Res Bull 2003, 60: 167–178.

    Article  CAS  PubMed  Google Scholar 

  41. Daniels D, Miselis RR, Flanagan-Cato LM. Central neuronal circuit innervating the lordosis-producing muscles defined by transneuronal transport of pseudorabies virus. J Neurosci 1999, 19: 2823–2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamada S, Kawata M. Identification of neural cells activated by mating stimulus in the periaqueductal gray in female rats. Front Neurosci 2014, 8: 421.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 1995, 46: 575–605.

    Article  CAS  PubMed  Google Scholar 

  44. George DT, Ameli R, Koob GF. Periaqueductal gray sheds light on dark areas of psychopathology. Trends Neurosci 2019, 42: 349–360.

    Article  CAS  PubMed  Google Scholar 

  45. Campos AC, Fogaça MV, Aguiar DC, Guimarães FS. Animal models of anxiety disorders and stress. Braz J Psychiatry 2013, 35(Suppl 2): S101-111.

    Article  PubMed  Google Scholar 

  46. Papagianni EP, Stevenson CW. Cannabinoid regulation of fear and anxiety: An update. Curr Psychiatry Rep 2019, 21: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019, 236: 415–437.

    Article  CAS  Google Scholar 

  48. Elman I, Borsook D, Volkow ND. Pain and suicidality: Insights from reward and addiction neuroscience. Prog Neurobiol 2013, 109: 1–27.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vázquez-León P, Campos-Rodríguez C, Gonzalez-Pliego C, Miranda-Páez A. Differential effects of cholecystokinin (CCK-8) microinjection into the ventrolateral and dorsolateral periaqueductal gray on anxiety models in Wistar rats. Horm Behav 2018, 106: 105–111.

    Article  PubMed  CAS  Google Scholar 

  50. Bandler R, Keay KA. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 1996, 107: 285–300.

    Article  CAS  PubMed  Google Scholar 

  51. Fanselow MS, Decola JP, de Oca BM, Landeira-Fernandez J. Ventral and dorsolateral regions of the midbrain periaqueductal gray (PAG) control different stages of defensive behavior: Dorsolateral PAG lesions enhance the defensive freezing produced by massed and immediate shock. Aggr Behav 1995, 21: 63–77.

    Article  Google Scholar 

  52. Monassi CR, Leite-Panissi CR, Menescal-de-Oliveira L. Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res Bull 1999, 50: 201–208.

    Article  CAS  PubMed  Google Scholar 

  53. Monassi CR, Hoffmann A, Menescal-De-oliveira L. Participation of the periaqueductal gray matter in the modulation of tonic immobility in the Guinea pig. Braz J Med Biol Res 1994, 27: 1243–1248.

    CAS  PubMed  Google Scholar 

  54. Dampney RA, Furlong TM, Horiuchi J, Iigaya K. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton Neurosci 2013, 175: 17–25.

    Article  PubMed  Google Scholar 

  55. Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends Neurosci 1994, 17: 379–389.

    Article  CAS  PubMed  Google Scholar 

  56. Miranda-Páez A, Zamudio S, Vázquez-León P, Campos-Rodríguez C, Ramírez-San Juan E. Involvement of opioid and GABA systems in the ventrolateral periaqueductal gray on analgesia associated with tonic immobility. Pharmacol Biochem Behav 2016, 142: 72–78.

    Article  PubMed  CAS  Google Scholar 

  57. Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, et al. Midbrain circuits for defensive behaviour. Nature 2016, 534: 206–212.

    Article  CAS  PubMed  Google Scholar 

  58. Ho YC, Lin TB, Hsieh MC, Lai CY, Chou D, Chau YP, et al. Periaqueductal gray glutamatergic transmission governs chronic stress-induced depression. Neuropsychopharmacology 2018, 43: 302–312.

    Article  CAS  PubMed  Google Scholar 

  59. Gross CT, Canteras NS. The many paths to fear. Nat Rev Neurosci 2012, 13: 651–658.

    Article  CAS  PubMed  Google Scholar 

  60. Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 2017, 76: 39–47.

    Article  PubMed  Google Scholar 

  61. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 2000, 3: 1049–1056.

    Article  CAS  PubMed  Google Scholar 

  62. Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: State of the field. Neuroimage 2012, 60: 505–522.

    Article  PubMed  Google Scholar 

  63. Marichal-Cancino BA, González-Hernández A, Muñoz-Islas E, Villalón CM. Monoaminergic receptors as modulators of the perivascular sympathetic and sensory CGRPergic outflows. Curr Neuropharmacol 2020, 18: 790–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Escarcega González CE, González Hernández A, Villalón CM, Rodríguez MG, Marichal Cancino BA. Β-adrenoceptor blockade for infantile hemangioma therapy: Do β3-adrenoceptors play a role? J Vasc Res 2018, 55: 159–168.

    Article  PubMed  CAS  Google Scholar 

  65. Altamirano-Espinoza AH, González-Hernández A, Manrique-Maldonado G, Marichal-Cancino BA, Ruiz-Salinas I, Villalón CM. The role of dopamine D2, but not D3 or D4, receptor subtypes, in quinpirole-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats. Br J Pharmacol 2013, 170: 1102–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Manrique-Maldonado G, González-Hernández A, Marichal-Cancino BA, Villamil-Hernández MT, del Mercado OA, Centurión D, et al. The dopamine receptors mediating inhibition of the sympathetic vasopressor outflow in pithed rats: Pharmacological correlation with the D(2) -like type. Basic Clin Pharmacol Toxicol 2011, 109: 506–512.

    Article  CAS  PubMed  Google Scholar 

  67. Marichal-Cancino BA, González-Hernández A, MaassenVanDenBrink A, Ramírez-San Juan E, Villalón CM. Potential mechanisms involved in palmitoylethanolamide-induced vasodepressor effects in rats. J Vasc Res 2020, 57: 152–163.

    Article  CAS  PubMed  Google Scholar 

  68. Marichal-Cancino BA, Manrique-Maldonado G, Altamirano-Espinoza AH, Ruiz-Salinas I, González-Hernández A, MaassenVanDenBrink A, et al. Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats. Eur J Pharmacol 2013, 721: 168–177.

    Article  CAS  PubMed  Google Scholar 

  69. Marichal-Cancino BA, Altamirano-Espinoza AH, Manrique-Maldonado G, MaassenVanDenBrink A, Villalón CM. Role of pre-junctional CB1, but not CB2, TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats. Basic Clin Pharmacol Toxicol 2014, 114: 240–247.

    Article  CAS  PubMed  Google Scholar 

  70. Wong TM, Shan J. Modulation of sympathetic actions on the heart by opioid receptor stimulation. J Biomed Sci 2001, 8: 299–306.

    Article  CAS  PubMed  Google Scholar 

  71. Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 1999, 46: 1509–1522.

    Article  CAS  PubMed  Google Scholar 

  72. Wright KM, Jhou TC, Pimpinelli D, McDannald MA. Cue-inhibited ventrolateral periaqueductal gray neurons signal fear output and threat probability in male rats. Elife Sci 2019, 8: e50054.

  73. Wright KM, McDannald MA. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output. Elife 2019, 8: e45013.

  74. Risbrough VB, Stein MB. Role of corticotropin releasing factor in anxiety disorders: A translational research perspective. Horm Behav 2006, 50: 550–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mathew SJ, Price RB, Charney DS. Recent advances in the neurobiology of anxiety disorders: Implications for novel therapeutics. Am J Med Genet C Semin Med Genet 2008, 148C: 89–98.

    Article  CAS  PubMed  Google Scholar 

  76. Bertoglio LJ, de Bortoli VC, Zangrossi H Jr. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 2007, 1156: 133–138.

    Article  CAS  PubMed  Google Scholar 

  77. Bertoglio LJ, Zangrossi H Jr. Involvement of dorsolateral periaqueductal gray cholecystokinin-2 receptors in the regulation of a panic-related behavior in rats. Brain Res 2005, 1059: 46–51.

    Article  CAS  PubMed  Google Scholar 

  78. Netto CF, Guimarães FS. Anxiogenic effect of cholecystokinin in the dorsal periaqueductal gray. Neuropsychopharmacology 2004, 29: 101–107.

    Article  PubMed  CAS  Google Scholar 

  79. Zanoveli JM, Netto CF, Guimarães FS, Zangrossi H Jr. Systemic and intra-dorsal periaqueductal gray injections of cholecystokinin sulfated octapeptide (CCK-8s) induce a panic-like response in rats submitted to the elevated T-maze. Peptides 2004, 25: 1935–1941.

    Article  PubMed  CAS  Google Scholar 

  80. Chieng B, Christie MD. Local opioid withdrawal in rat single periaqueductal gray neurons in vitro. J Neurosci 1996, 16: 7128–7136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Epler AJ, Tomko RL, Piasecki TM, Wood PK, Sher KJ, Shiffman S, et al. Does hangover influence the time to next drink? An investigation using ecological momentary assessment. Alcohol Clin Exp Res 2014, 38: 1461–1469.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Erb S, Shaham Y, Stewart J. Stress-induced relapse to drug seeking in the rat: Role of the bed nucleus of the stria terminalis and amygdala. Stress 2001, 4: 289–303.

    Article  CAS  PubMed  Google Scholar 

  83. Fox HC, Bergquist KL, Hong KI, Sinha R. Stress-induced and alcohol cue-induced craving in recently abstinent alcohol-dependent individuals. Alcohol Clin Exp Res 2007, 31: 395–403.

    Article  PubMed  Google Scholar 

  84. Koob GF. Neurobiology of opioid addiction: Opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry 2020, 87: 44–53.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang S, Zhornitsky S, Wang WY, Le TM, Dhingra I, Chen Y, et al. Resting state hypothalamic and dorsomedial prefrontal cortical connectivity of the periaqueductal gray in cocaine addiction. Addict Biol 2021, 26: e12989. https://doi.org/10.1111/adb.12989.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang S, Zhornitsky S, Wang WY, Dhingra I, Le TM, Li CR. Cue-elicited functional connectivity of the periaqueductal gray and tonic cocaine craving. Drug Alcohol Depend 2020, 216: 108240.

  87. Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi JK, Buhle JT, et al. Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci USA 2013, 110: 17101–17106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jia TY, Xie C, Banaschewski T, Barker GJ, Bokde ALW, Büchel C, et al. Neural network involving medial orbitofrontal cortex and dorsal periaqueductal gray regulation in human alcohol abuse. Sci Adv 2021, 7: eabd4074.

  89. Blum K, Oscar-Berman M, Stuller E, Miller D, Giordano J, Morse S, et al. Neurogenetics and nutrigenomics of neuro-nutrient therapy for reward deficiency syndrome (RDS): Clinical ramifications as a function of molecular neurobiological mechanisms. J Addict Res Ther 2012, 3: 139.

    PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Larcher KM, Misic B, Dagher A. Anatomical and functional organization of the human substantia nigra and its connections. Elife 2017, 6: e26653.

  91. Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways: From neurogenesis to circuit assembly. Am J Pathol 2016, 186: 478–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 2004, 24: 4393–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schultz W. Recent advances in understanding the role of phasic dopamine activity. F1000Res 2019, 8: F1000FacultyRev–F1000Faculty1680.

  94. Ntamati NR, Creed M, Achargui R, Lüscher C. Periaqueductal efferents to dopamine and GABA neurons of the VTA. PLoS One 2018, 13: e0190297. https://doi.org/10.1371/journal.pone.0190297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Geisler S, Derst C, Veh RW, Zahm DS. Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 2007, 27: 5730–5743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007, 30: 289–316.

    Article  CAS  PubMed  Google Scholar 

  97. Morales M, Margolis EB. Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 2017, 18: 73–85.

    Article  CAS  PubMed  Google Scholar 

  98. St Laurent R, Martinez Damonte V, Tsuda AC, Kauer JA. Periaqueductal gray and rostromedial tegmental inhibitory afferents to VTA have distinct synaptic plasticity and opiate sensitivity. Neuron 2020, 106: 624-636.e4.

    Article  CAS  PubMed  Google Scholar 

  99. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 1954, 47: 419–427.

    Article  CAS  PubMed  Google Scholar 

  100. Floresco SB, Montes DR, Tse MMT, van Holstein M. Differential contributions of nucleus accumbens subregions to cue-guided risk/reward decision making and implementation of conditional rules. J Neurosci 2018, 38: 1901–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Horovitz O, Richter-Levin G. Dorsal periaqueductal gray simultaneously modulates ventral subiculum induced-plasticity in the basolateral amygdala and the nucleus accumbens. Front Behav Neurosci 2015, 9: 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kim EJ, Horovitz O, Pellman BA, Tan LM, Li QL, Richter-Levin G, et al. Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proc Natl Acad Sci USA 2013, 110: 14795–14800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Horovitz O, Richter-Levin A, Xu L, Jing L, Richter-Levin G. Periaqueductal Grey differential modulation of Nucleus Accumbens and Basolateral Amygdala plasticity under controllable and uncontrollable stress. Sci Rep 2017, 7: 487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, et al. The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 1997, 9: 354–381.

    Article  CAS  PubMed  Google Scholar 

  105. Li Z, Chen Z, Fan G, Li A, Yuan J, Xu T. Cell-type-specific afferent innervation of the nucleus accumbens core and shell. Front Neuroanat 2018, 12: 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wyvell CL, Berridge KC. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: Enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 2000, 20: 8122–8130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Taha SA, Fields HL. Inhibitions of nucleus accumbens neurons encode a gating signal for reward-directed behavior. J Neurosci 2006, 26: 217–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ikemoto S. Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 2007, 56: 27–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci Biobehav Rev 2010, 35: 129–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ikemoto S, Glazier BS, Murphy JM, McBride WJ. Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 1997, 17: 8580–8587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shahid Z SG. Physiology, Hypothalamus. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. https://www.ncbi.nlm.nih.gov/books/NBK535380/ 2018.

  112. Reppucci CJ, Petrovich GD. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: A single and double retrograde tracing study in rats. Brain Struct Funct 2016, 221: 2937–2962.

    Article  PubMed  Google Scholar 

  113. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005, 437: 556–559.

    Article  CAS  PubMed  Google Scholar 

  114. Han Y, Yuan K, Zheng YB, Lu L. Orexin receptor antagonists as emerging treatments for psychiatric disorders. Neurosci Bull 2020, 36: 432–448.

    Article  CAS  PubMed  Google Scholar 

  115. Watkins SS, Koob GF, Markou A. Neural mechanisms underlying nicotine addiction: Acute positive reinforcement and withdrawal. Nicotine Tob Res 2000, 2: 19–37.

    Article  CAS  PubMed  Google Scholar 

  116. Ullah F, Dos Anjos-Garcia T, Mendes-Gomes J, Elias-Filho DH, Falconi-Sobrinho LL, Freitas RL, et al. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017, 319: 135–147.

    Article  CAS  PubMed  Google Scholar 

  117. de Quidt ME, Emson PC. Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system——I. Radioimmunoassay and chromatographic characterisation. Neuroscience 1986, 18: 527–543.

    PubMed  Google Scholar 

  118. Danger JM, Tonon MC, Jenks BG, Saint-Pierre S, Martel JC, Fasolo A, et al. Neuropeptide Y: Localization in the central nervous system and neuroendocrine functions. Fundam Clin Pharmacol 1990, 4: 307–340.

    Article  CAS  PubMed  Google Scholar 

  119. de Quidt ME, Emson PC. Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system——II. Immunohistochemical analysis. Neuroscience 1986, 18: 545–618.

    PubMed  Google Scholar 

  120. Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, et al. Neuropeptide Y distribution in the rat brain. Science 1983, 221: 877–879.

    Article  CAS  PubMed  Google Scholar 

  121. Kask A, Harro J, von Hörsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002, 26: 259–283.

    Article  CAS  PubMed  Google Scholar 

  122. Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, et al. Role of neuropeptide Y Y1 and Y2 receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology 2012, 62: 200–208.

    Article  CAS  PubMed  Google Scholar 

  123. Gilpin NW, Misra K, Herman MA, Cruz MT, Koob GF, Roberto M. Neuropeptide Y opposes alcohol effects on gamma-aminobutyric acid release in amygdala and blocks the transition to alcohol dependence. Biol Psychiatry 2011, 69: 1091–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vázquez-León P, Mendoza-Ruiz LG, Juan ER, Chamorro-Cevallos GA, Miranda-Páez A. Analgesic and anxiolytic effects of [Leu31, Pro34]-neuropeptide Y microinjected into the periaqueductal gray in rats. Neuropeptides 2017, 66: 81–89.

    Article  PubMed  CAS  Google Scholar 

  125. Ong WY, Stohler CS, Herr DR. Role of the prefrontal cortex in pain processing. Mol Neurobiol 2019, 56: 1137–1166.

    Article  CAS  PubMed  Google Scholar 

  126. Hardy SG, Leichnetz GR. Cortical projections to the periaqueductal gray in the monkey: A retrograde and orthograde horseradish peroxidase study. Neurosci Lett 1981, 22: 97–101.

    Article  CAS  PubMed  Google Scholar 

  127. Coulombe MA, Erpelding N, Kucyi A, Davis KD. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp 2016, 37: 1514–1530.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Goriounova NA, Mansvelder HD. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood. Front Synaptic Neurosci 2012, 4: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Amarante LM, Caetano MA, Laubach M. The Medial Frontal Cortex Generates Rhythmic Activity that Encodes Reward Value. bioRxiv 2017: 144550.

  130. Vander Weele CM, Siciliano CA, Matthews GA, Namburi P, Izadmehr EM, Espinel IC, et al. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 2018, 563: 397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheriyan J, Sheets PL. Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain. J Neurosci 2018, 38: 4829–4839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Siciliano CA, Noamany H, Chang CJ, Brown AR, Chen XH, Leible D, et al. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 2019, 366: 1008–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang JT, Gadotti VM, Chen LN, Souza IA, Huang S, Wang DC, et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci 2019, 22: 1659–1668.

    Article  CAS  PubMed  Google Scholar 

  134. Kubota N, Amemiya S, Yanagita S, Nishijima T, Kita I. Central nucleus of the amygdala is involved in induction of yawning response in rats. Behav Brain Res 2019, 371: 111974.

  135. Kim B, Yoon S, Nakajima R, Lee HJ, Lim HJ, Lee YK, et al. Dopamine D2 receptor-mediated circuit from the central amygdala to the bed nucleus of the stria terminalis regulates impulsive behavior. Proc Natl Acad Sci USA 2018, 115: E10730–E10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hao SJ, Yang HB, Wang XM, He Y, Xu HF, Wu XT, et al. The lateral hypothalamic and BNST GABAergic projections to the anterior ventrolateral periaqueductal gray regulate feeding. Cell Rep 2019, 28: 616-624.e5.

    Article  CAS  PubMed  Google Scholar 

  137. Sardi NF, Lazzarim MK, Guilhen VA, Marcílio RS, Natume PS, Watanabe TC, et al. Chronic sleep restriction increases pain sensitivity over time in a periaqueductal gray and nucleus accumbens dependent manner. Neuropharmacology 2018, 139: 52–60.

    Article  CAS  PubMed  Google Scholar 

  138. Li YQ, Takada M, Shinonaga Y, Mizuno N. The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat. J Comp Neurol 1993, 333: 118–133.

    Article  CAS  PubMed  Google Scholar 

  139. Hasue RH, Shammah-Lagnado SJ. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: A combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 2002, 454: 15–33.

    Article  CAS  PubMed  Google Scholar 

  140. Walker DL, Toufexis DJ, Davis M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 2003, 463: 199–216.

    Article  CAS  PubMed  Google Scholar 

  141. Kash TL. The role of biogenic amine signaling in the bed nucleus of the stria terminals in alcohol abuse. Alcohol 2012, 46: 303–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hammack SE, Guo JD, Hazra R, Dabrowska J, Myers KM, Rainnie DG. The response of neurons in the bed nucleus of the stria terminalis to serotonin: Implications for anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33: 1309–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Walker DL, Miles LA, Davis M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33: 1291–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Silberman Y, Winder DG. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry 2013, 4: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pleil KE, Rinker JA, Lowery-Gionta EG, Mazzone CM, McCall NM, Kendra AM, et al. NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking. Nat Neurosci 2015, 18: 545–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Buffalari DM, See RE. Inactivation of the bed nucleus of the stria terminalis in an animal model of relapse: Effects on conditioned cue-induced reinstatement and its enhancement by yohimbine. Psychopharmacology (Berl) 2011, 213: 19–27.

    Article  CAS  Google Scholar 

  147. Wenzel JM, Cotten SW, Dominguez HM, Lane JE, Shelton K, Su ZI, et al. Noradrenergic β-receptor antagonism within the central nucleus of the amygdala or bed nucleus of the stria terminalis attenuates the negative/anxiogenic effects of cocaine. J Neurosci 2014, 34: 3467–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meloni EG, Gerety LP, Knoll AT, Cohen BM, Carlezon WA Jr. Behavioral and anatomical interactions between dopamine and corticotropin-releasing factor in the rat. J Neurosci 2006, 26: 3855–3863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, et al. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: A role in regulation of pain. Neuropsychopharmacology 2016, 41: 2122–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McDonald AJ. Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol 1982, 208: 401–418.

    Article  CAS  PubMed  Google Scholar 

  151. Jolkkonen E, Pitkänen A. Intrinsic connections of the rat amygdaloid complex: Projections originating in the central nucleus. J Comp Neurol 1998, 395: 53–72.

    Article  CAS  PubMed  Google Scholar 

  152. Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: Anatomy and physiology. Physiol Rev 2003, 83: 803–834.

  153. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat Embryol (Berl) 2005, 210: 343–352.

    Article  CAS  Google Scholar 

  154. Li JN, Sheets PL. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. J Physiol 2018, 596: 6289–6305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Avegno EM, Lobell TD, Itoga CA, Baynes BB, Whitaker AM, Weera MM, et al. Central amygdala circuits mediate hyperalgesia in alcohol-dependent rats. J Neurosci 2018, 38: 7761–7773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sun Y, Blanco-Centurion C, Zou BY, Bendell E, Shiromani PJ, Liu M. Amygdala GABA Neurons Project To vlPAG And mPFC. IBRO Rep 2019, 6: 132–136.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yin WW, Mei LS, Sun TT, Wang YP, Li J, Chen CM, et al. A central amygdala-ventrolateral periaqueductal gray matter pathway for pain in a mouse model of depression-like behavior. Anesthesiology 2020, 132: 1175–1196.

    Article  CAS  PubMed  Google Scholar 

  158. Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, et al. Regulation of cocaine reward by CREB. Science 1998, 282: 2272–2275.

    Article  CAS  PubMed  Google Scholar 

  159. Lüthi A, Lüscher C. Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci 2014, 17: 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  160. Nobre MJ, Ribeiro dos Santos N, Aguiar MS, Brandão ML. Blockade of mu- and activation of kappa-opioid receptors in the dorsal periaqueductal gray matter produce defensive behavior in rats tested in the elevated plus-maze. Eur J Pharmacol 2000, 404: 145–151.

  161. Brandão ML. Involvement of opioid mechanisms in the dorsal periaqueductal gray in drug abuse. Rev Neurosci 1993, 4: 397–405.

    Article  PubMed  Google Scholar 

  162. Maldonado R, Fournié-Zaluski MC, Roques BP. Attenuation of the morphine withdrawal syndrome by inhibition of catabolism of endogenous enkephalins in the periaqueductal gray matter. Naunyn Schmiedebergs Arch Pharmacol 1992, 345: 466–472.

    Article  CAS  PubMed  Google Scholar 

  163. Olmstead MC, Franklin KB. The development of a conditioned place preference to morphine: Effects of microinjections into various CNS sites. Behav Neurosci 1997, 111: 1324–1334.

    Article  CAS  PubMed  Google Scholar 

  164. Tryon VL, Mizumori SJY. A novel role for the periaqueductal gray in consummatory behavior. Front Behav Neurosci 2018, 12: 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 2018, 136: 10–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Slutske WS, Piasecki TM, Hunt-Carter EE. Development and initial validation of the Hangover Symptoms Scale: Prevalence and correlates of Hangover Symptoms in college students. Alcohol Clin Exp Res 2003, 27: 1442–1450.

    Article  PubMed  Google Scholar 

  167. Verster JC. The “hair of the dog”: A useful hangover remedy or a predictor of future problem drinking? Curr Drug Abuse Rev 2009, 2: 1–4.

    Article  PubMed  Google Scholar 

  168. Eichenberger GC, Ribeiro SJ, Osaki MY, Maruoka RY, Resende GC, Castellan-Baldan L, et al. Neuroanatomical and psychopharmacological evidence for interaction between opioid and GABAergic neural pathways in the modulation of fear and defense elicited by electrical and chemical stimulation of the deep layers of the superior colliculus and dorsal periaqueductal gray matter. Neuropharmacology 2002, 42: 48–59.

    Article  CAS  PubMed  Google Scholar 

  169. Ezequiel Leite L, Nobre MJ. The negative effects of alcohol hangover on high-anxiety phenotype rats are influenced by the glutamate receptors of the dorsal midbrain. Neuroscience 2012, 213: 93–105.

    Article  CAS  PubMed  Google Scholar 

  170. Koob GF. Theoretical frameworks and mechanistic aspects of alcohol addiction: Alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci 2013, 13: 3–30.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Long C, Yang L, Faingold CL, Steven Evans M. Excitatory amino acid receptor-mediated responses in periaqueductal gray neurons are increased during ethanol withdrawal. Neuropharmacology 2007, 52: 802–811.

    Article  CAS  PubMed  Google Scholar 

  172. Bonassoli VT, Contardi EB, Milani H, de Oliveira RM. Effects of nitric oxide synthase inhibition in the dorsolateral periaqueductal gray matter on ethanol withdrawal-induced anxiety-like behavior in rats. Psychopharmacology (Berl) 2013, 228: 487–498.

    Article  CAS  Google Scholar 

  173. Li C, McCall NM, Lopez AJ, Kash TL. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons. Alcohol 2013, 47: 279–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu YL, Xuei XL, et al. Gene expression changes in glutamate and GABA-A receptors, neuropeptides, ion channels, and cholesterol synthesis in the periaqueductal gray following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats. Alcohol Clin Exp Res 2016, 40: 955–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Riley JL, King C. Self-report of alcohol use for pain in a multi-ethnic community sample. J Pain 2009, 10: 944–952.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Egli M, Koob GF, Edwards S. Alcohol dependence as a chronic pain disorder. Neurosci Biobehav Rev 2012, 36: 2179–2192.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Le TM, Zhornitsky S, Zhang S, Li CR. Pain and reward circuits antagonistically modulate alcohol expectancy to regulate drinking. Transl Psychiatry 2020, 10: 220.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Galvalisi M, Prieto JP, Martínez M, Abin-Carriquiry JA, Scorza C. Caffeine induces a stimulant effect and increases dopamine release in the nucleus accumbens shell through the pulmonary inhalation route of administration in rats. Neurotox Res 2017, 31: 90–98.

    Article  CAS  PubMed  Google Scholar 

  179. Smith JE, Lawrence AD, Diukova A, Wise RG, Rogers PJ. Storm in a coffee cup: Caffeine modifies brain activation to social signals of threat. Soc Cogn Affect Neurosci 2012, 7: 831–840.

    Article  PubMed  Google Scholar 

  180. Bae JH, Park JH, Im SS, Song DK. Coffee and health. Integr Med Res 2014, 3: 189–191.

    Article  PubMed  Google Scholar 

  181. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, et al. Addiction as a stress surfeit disorder. Neuropharmacology 2014, 76 Pt B: 370–382.

  182. Ignatowska-Jankowska BM, Muldoon PP, Lichtman AH, Damaj MI. The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology (Berl) 2013, 229: 591–601.

    Article  CAS  Google Scholar 

  183. Marichal-Cancino BA, Fajardo-Valdez A, Ruiz-Contreras AE, Mendez-Díaz M, Prospero-García O. Advances in the physiology of GPR55 in the central nervous system. Curr Neuropharmacol 2017, 15: 771–778.

    Article  CAS  PubMed  Google Scholar 

  184. Marichal-Cancino BA, Fajardo-Valdez A, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García O. Possible role of hippocampal GPR55 in spatial learning and memory in rats. Acta Neurobiol Exp (Wars) 2018, 78: 41–50.

    Article  Google Scholar 

  185. Marichal-Cancino BA, Sánchez-Fuentes A, Méndez-Díaz M, Ruiz-Contreras AE, Prospéro-García O. Blockade of GPR55 in the dorsolateral striatum impairs performance of rats in a T-maze paradigm. Behav Pharmacol 2016, 27: 393–396.

    Article  CAS  PubMed  Google Scholar 

  186. Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2019, 17: 947–960.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sánchez-Fuentes A, Marichal-Cancino BA, Méndez-Díaz M, Becerril-Meléndez AL, Ruiz-Contreras AE, Prospéro-Garcia O. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system. Neurosci Lett 2016, 631: 104–108.

    Article  PubMed  CAS  Google Scholar 

  188. Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in neurobiology and pharmacology of GPR12. Front Pharmacol 2020, 11: 628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Barrot M, Sesack SR, Georges F, Pistis M, Hong S, Jhou TC. Braking dopamine systems: A new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci 2012, 32: 14094–14101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Casarotto PC, Terzian AL, Aguiar DC, Zangrossi H, Guimarães FS, Wotjak CT, et al. Opposing roles for cannabinoid receptor type-1 (CB1) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats. Neuropsychopharmacology 2012, 37: 478–486.

    Article  CAS  PubMed  Google Scholar 

  191. Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, di Marzo V. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 2006, 139: 1405–1415.

    Article  CAS  PubMed  Google Scholar 

  192. Langs G, Fabisch H, Fabisch K, Zapotoczky H. Can Cannabis trigger recurrent panic attacks in susceptible patients? Eur Psychiatry 1997, 12: 415–419.

    Article  CAS  PubMed  Google Scholar 

  193. de Mello Schier AR, de Oliveira Ribeiro NP, Coutinho DS, Machado S, Arias-Carrión O, Crippa JA, et al. Antidepressant-like and anxiolytic-like effects of cannabidiol: A chemical compound of Cannabis sativa. CNS Neurol Disord Drug Targets 2014, 13: 953–960.

    Article  PubMed  CAS  Google Scholar 

  194. Moreira FA, Aguiar DC, Campos AC, Lisboa SF, Terzian AL, Resstel LB, et al. Antiaversive effects of cannabinoids: Is the periaqueductal gray involved? Neural Plast 2009, 2009: 625469.

  195. Walker JM, Huang SM, Strangman NM, Tsou K, Sañudo-Peña MC. Pain modulation by release of the endogenous cannabinoid anandamide. PNAS 1999, 96: 12198–12203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Martin WJ, Patrick SL, Coffin PO, Tsou K, Walker JM. An examination of the central sites of action of cannabinoid-induced antinociception in the rat. Life Sci 1995, 56: 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  197. Finn DP, Jhaveri MD, Beckett SR, Kendall DA, Marsden CA, Chapman V. Cannabinoids modulate ultrasound-induced aversive responses in rats. Psychopharmacology (Berl) 2004, 172: 41–51.

    Article  CAS  Google Scholar 

  198. Henstridge CM, Balenga NA, Schröder R, Kargl JK, Platzer W, Martini L, et al. GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 2010, 160: 604–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shi QX, Yang LK, Shi WL, Wang L, Zhou SM, Guan SY, et al. The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress. Mol Brain 2017, 10: 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Deliu E, Sperow M, Console-Bram L, Carter RL, Tilley DG, Kalamarides DJ, et al. The lysophosphatidylinositol receptor GPR55 modulates pain perception in the periaqueductal gray. Mol Pharmacol 2015, 88: 265–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chieng BC, Hallberg C, Nyberg FJ, Christie MJ. Enhanced c-Fos in periaqueductal grey GABAergic neurons during opioid withdrawal. Neuroreport 2005, 16: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  202. Hao S, Liu S, Zheng X, Zheng W, Ouyang H, Mata M, et al. The role of TNFα in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology 2011, 36: 664–676.

    Article  CAS  PubMed  Google Scholar 

  203. Frias AT, Fernandes GG, Zangrossi H Jr. GABAA/benzodiazepine receptors in the dorsal periaqueductal gray mediate the panicolytic but not the anxiolytic effect of alprazolam in rats. Behav Brain Res 2019, 364: 99–105.

    Article  CAS  PubMed  Google Scholar 

  204. Mutschler NH, Miczek KA, Hammer RP Jr. Reduction of zif268 messenger RNA expression during prolonged withdrawal following “binge” cocaine self-administration in rats. Neuroscience 2000, 100: 531–538.

    Article  CAS  PubMed  Google Scholar 

  205. Chang B, Daniele CA, Gallagher K, Madonia M, Mitchum RD, Barrett L, et al. Nicotinic excitation of serotonergic projections from dorsal raphe to the nucleus accumbens. J Neurophysiol 2011, 106: 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cheeta S, Irvine EE, Kenny PJ, File SE. The dorsal raphé nucleus is a crucial structure mediating nicotine’s anxiolytic effects and the development of tolerance and withdrawal responses. Psychopharmacology (Berl) 2001, 155: 78–85.

    Article  CAS  Google Scholar 

  207. Taylor NE, Pei JZ, Zhang J, Vlasov KY, Davis T, Taylor E, et al. The role of glutamatergic and dopaminergic neurons in the periaqueductal gray/dorsal raphe: Separating analgesia and anxiety. eNeuro 2019, 6: ENEURO.0018–ENEURO.0018.2019.

  208. Buhle JT, Kober H, Ochsner KN, Mende-Siedlecki P, Weber J, Hughes BL, et al. Common representation of pain and negative emotion in the midbrain periaqueductal gray. Soc Cogn Affect Neurosci 2013, 8: 609–616.

    Article  PubMed  Google Scholar 

  209. Fukunaga Y, Kishioka S. Enkephalinergic neurons in the periaqueductal gray and morphine withdrawal. Jpn J Pharmacol 2000, 82: 175–180.

    Article  CAS  PubMed  Google Scholar 

  210. Fields HL. The doctor’s dilemma: Opiate analgesics and chronic pain. Neuron 2011, 69: 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015, 38: 217–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Volkow ND, McLellan AT. Opioid abuse in chronic pain——misconceptions and mitigation strategies. N Engl J Med 2016, 374: 1253–1263.

    Article  CAS  PubMed  Google Scholar 

  213. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 2009, 63: 533–543.

    Article  CAS  PubMed  Google Scholar 

  214. Bagley EE, Ingram SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020, 173: 108131.

  215. Castilho VM, Borelli KG, Brandão ML, Nobre MJ. Anxiety-like symptoms induced by morphine withdrawal may be due to the sensitization of the dorsal periaqueductal grey. Physiol Behav 2008, 94: 552–562.

    Article  CAS  PubMed  Google Scholar 

  216. Shaham Y, Rajabi H, Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: The effects of stress, heroin priming, and withdrawal. J Neurosci 1996, 16: 1957–1963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: Focus on serotonergic inhibition of panic. Neurosci Biobehav Rev 2014, 46(Pt 3): 379–396.

    Article  CAS  PubMed  Google Scholar 

  218. Heinsbroek JA, Neuhofer DN, Griffin WC, Siegel GS, Bobadilla AC, Kupchik YM, et al. Loss of plasticity in the D2-accumbens pallidal pathway promotes cocaine seeking. J Neurosci 2017, 37: 757–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hurd YL, Pontén M. Cocaine self-administration behavior can be reduced or potentiated by the addition of specific dopamine concentrations in the nucleus accumbens and amygdala using in vivo microdialysis. Behav Brain Res 2000, 116: 177–186.

    Article  CAS  PubMed  Google Scholar 

  220. Kim ES, Lattal KM. Context-dependent and context-independent effects of D1 receptor antagonism in the basolateral and central amygdala during cocaine self-administration. eNeuro 2019, 6: ENEURO.0203–ENEURO.0219.2019.

  221. Harris GC, Aston-Jones G. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 1994, 371: 155–157.

    Article  CAS  PubMed  Google Scholar 

  222. Sobieraj JC, Kim A, Fannon MJ, Mandyam CD. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct 2016, 221: 261–276.

    Article  PubMed  Google Scholar 

  223. Nikulina EM, Marchand JE, Kream RM, Miczek KA. Behavioral sensitization to cocaine after a brief social stress is accompanied by changes in fos expression in the murine brainstem. Brain Res 1998, 810: 200–210.

    Article  CAS  PubMed  Google Scholar 

  224. Miczek KA, Nikulina E, Kream RM, Carter G, Espejo EF. Behavioral sensitization to cocaine after a brief social defeat stress: C-fos expression in the PAG. Psychopharmacology (Berl) 1999, 141: 225–234.

    Article  CAS  Google Scholar 

  225. Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 1991, 4: 17–26.

  226. Nirogi R, Mohammed AR, Shinde AK, Ravella SR, Bogaraju N, Subramanian R, et al. Discovery and Development of 3-(6-Chloropyridine-3-yloxymethyl)-2-azabicyclo[3.1.0]hexane Hydrochloride (SUVN-911): A Novel, Potent, Selective, and Orally Active Neuronal Nicotinic Acetylcholine α4β2 Receptor Antagonist for the Treatment of Depression. J Med Chem 2020, 63: 2833–2853.

  227. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends Pharmacol Sci 2006, 27: 482–491.

    Article  CAS  PubMed  Google Scholar 

  228. Rose JE, Behm FM, Salley AN, Bates JE, Coleman RE, Hawk TC, et al. Regional brain activity correlates of nicotine dependence. Neuropsychopharmacology 2007, 32: 2441–2452.

    Article  CAS  PubMed  Google Scholar 

  229. Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 1994, 653: 278–284.

    Article  CAS  PubMed  Google Scholar 

  230. Benowitz NL. Nicotine Addiction. N Engl J Med 2010, 362: 2295–2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Benowitz NL. Neurobiology of nicotine addiction: Implications for smoking cessation treatment. Am J Med 2008, 121: S3–S10.

    Article  CAS  PubMed  Google Scholar 

  232. Dani JA, De Biasi M. Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 2001, 70: 439–446.

    Article  CAS  PubMed  Google Scholar 

  233. Nakamura M, Jang IS. Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons. Eur J Pharmacol 2010, 640: 178–184.

    Article  CAS  PubMed  Google Scholar 

  234. Genzen JR, McGehee DS. Short- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors. Proc Natl Acad Sci USA 2003, 100: 6807–6812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Fu WM, Liou HC, Chen YH. Nerve terminal currents induced by autoreception of acetylcholine release. J Neurosci 1998, 18: 9954–9961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Guo JZ, Tredway TL, Chiappinelli VA. Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. J Neurosci 1998, 18: 1963–1969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Shin JH, Adrover MF, Alvarez VA. Distinctive modulation of dopamine release in the nucleus accumbens shell mediated by dopamine and acetylcholine receptors. J Neurosci 2017, 37: 11166–11180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Xiao C, Zhou CY, Jiang JH, Yin C. Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol Sin 2020, 41: 1–9.

    Article  CAS  PubMed  Google Scholar 

  239. Woolf NJ, Harrison JB, Buchwald JS. Cholinergic neurons of the feline pontomesencephalon. II. Ascending anatomical projections. Brain Res 1990, 520: 55–72.

    CAS  PubMed  Google Scholar 

  240. Baddick CG, Marks MJ. An autoradiographic survey of mouse brain nicotinic acetylcholine receptors defined by null mutants. Biochem Pharmacol 2011, 82: 828–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Umana IC, Daniele CA, Miller BA, Abburi C, Gallagher K, Brown MA, et al. Nicotinic modulation of descending pain control circuitry. Pain 2017, 158: 1938–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Depaulis A, Morgan MM, Liebeskind JC. GABAergic modulation of the analgesic effects of morphine microinjected in the ventral periaqueductal gray matter of the rat. Brain Res 1987, 436: 223–228.

    Article  CAS  PubMed  Google Scholar 

  243. Beitz AJ, Shepard RD. The midbrain periaqueductal gray in the rat. II. A Golgi analysis. J Comp Neurol 1985, 237: 460–475.

  244. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997, 56: 131–137.

    Article  CAS  PubMed  Google Scholar 

  245. Semba J, Mataki C, Yamada S, Nankai M, Toru M. Antidepressantlike effects of chronic nicotine on learned helplessness paradigm in rats. Biol Psychiatry 1998, 43: 389–391.

    Article  CAS  PubMed  Google Scholar 

  246. Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr, Janowsky DS, et al. Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology (Berl) 1999, 142: 193–199.

    Article  CAS  Google Scholar 

  247. Tizabi Y, Rezvani AH, Russell LT, Tyler KY, Overstreet DH. Depressive characteristics of FSL rats: Involvement of central nicotinic receptors. Pharmacol Biochem Behav 2000, 66: 73–77.

    Article  CAS  PubMed  Google Scholar 

  248. Ferguson SM, Brodkin JD, Lloyd GK, Menzaghi F. Antidepressant-like effects of the subtype-selective nicotinic acetylcholine receptor agonist, SIB-1508Y, in the learned helplessness rat model of depression. Psychopharmacology (Berl) 2000, 152: 295–303.

    Article  CAS  Google Scholar 

  249. Covey LS, Glassman AH, Stetner F. Depression and depressive symptoms in smoking cessation. Compr Psychiatry 1990, 31: 350–354.

    Article  CAS  PubMed  Google Scholar 

  250. Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 2014, 82: 797–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Nectow AR, Schneeberger M, Zhang HX, Field BC, Renier N, Azevedo E, et al. Identification of a brainstem circuit controlling feeding. Cell 2017, 170: 429-442.e11.

    Article  CAS  PubMed  Google Scholar 

  252. Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, et al. Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 2007, 144: 165–190.

    Article  CAS  PubMed  Google Scholar 

  253. Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. Relaxin-3 systems in the brain——the first 10 years. J Chem Neuroanat 2011, 42: 262–275.

    Article  CAS  PubMed  Google Scholar 

  254. Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol 2019, 31: e12700. https://doi.org/10.1111/jne.12700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Volkow ND, Baler RD. NOW vs LATER brain circuits: Implications for obesity and addiction. Trends Neurosci 2015, 38: 345–352.

    Article  CAS  PubMed  Google Scholar 

  256. Volkow ND, Wise RA, Baler R. The dopamine motive system: Implications for drug and food addiction. Nat Rev Neurosci 2017, 18: 741–752.

    Article  CAS  PubMed  Google Scholar 

  257. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998, 80: 1–27.

    Article  CAS  PubMed  Google Scholar 

  258. Deshmukh RR, Sharma PL. Stimulation of accumbens shell cannabinoid CB(1) receptors by noladin ether, a putative endocannabinoid, modulates food intake and dietary selection in rats. Pharmacol Res 2012, 66: 276–282.

    Article  CAS  PubMed  Google Scholar 

  259. Guzmán-Rodríguez S, Chávez-Reyes J, Vázquez-León P, Soriano-Ursúa MA, Rosalez MN, Allende G, et al. 1-boc-piperidine-4-carboxaldehyde prevents binge-eating behaviour and anxiety in rats. Pharmacology 2021, 106: 305–315.

    Article  PubMed  CAS  Google Scholar 

  260. Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci 2015, 16: 579–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Pomorska DK, do-Rego JC, do-Rego JL, Zubrzycka M, Janecka A. Opioid and cannabinoid system in food intake. Curr Pharm Des 2016, 22: 1361–1370.

  262. Kirkham TC, Williams CM. Synergistic efects of opioid and cannabinoid antagonists on food intake. Psychopharmacology (Berl) 2001, 153: 267–270.

    Article  CAS  Google Scholar 

  263. Solinas M, Goldberg SR. Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 2005, 30: 2035–2045.

    Article  CAS  PubMed  Google Scholar 

  264. Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front Pharmacol 2015, 6: 6.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

BAM-C and PB-I were supported by the Dirección General de Investigación y Posgrado from the Autonomous University of Aguascalientes. PB-I was supported by the PRODEP program and an early career research grant from the International Association for the Study of Pain. AM-P was supported by the “Instituto Politécnico Nacional” (SIP-IPN 20200241). PV-L was supported by a CONACyT Postdoctoral Fellowship (406562). Figure 1 was partially drawn using biorender.com. BAM-C, PB-I, PV-L and JC-R are current fellows of the “Sistema Nacional de Investigadores” from CONACYT. We would also like to thank Tarjani N. Shukla and Jamie K. Moy for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paulino Barragán-Iglesias or Bruno A. Marichal-Cancino.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-León, P., Miranda-Páez, A., Chávez-Reyes, J. et al. The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neurosci. Bull. 37, 1493–1509 (2021). https://doi.org/10.1007/s12264-021-00756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00756-y

Keywords

Navigation