Skip to main content

Advertisement

Log in

The Amygdala Responds Rapidly to Flashes Linked to Direct Retinal Innervation: A Flash-evoked Potential Study Across Cortical and Subcortical Visual Pathways

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Rapid detection and response to visual threats are critical for survival in animals. The amygdala (AMY) is hypothesized to be involved in this process, but how it interacts with the visual system to do this remains unclear. By recording flash-evoked potentials simultaneously from the superior colliculus (SC), lateral posterior nucleus of the thalamus, AMY, lateral geniculate nucleus (LGN) and visual cortex, which belong to the cortical and subcortical pathways for visual fear processing, we investigated the temporal relationship between these regions in visual processing in rats. A quick flash-evoked potential (FEP) component was identified in the AMY. This emerged as early as in the LGN and was approximately 25 ms prior to the earliest component recorded in the SC, which was assumed to be an important area in visual fear. This quick P1 component in the AMY was not affected by restraint stress or corticosterone injection, but was diminished by RU38486, a glucocorticoid receptor blocker. By injecting a monosynaptic retrograde AAV tracer into the AMY, we found that it received a direct projection from the retina. These results confirm the existence of a direct connection from the retina to the AMY, that the latency in the AMY to flashes is equivalent to that in the sensory thalamus, and that the response is modulated by glucocorticoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cant JS, Large ME, McCall L, Goodale MA. Independent processing of form, colour, and texture in object perception. Perception 2008, 37: 57–78.

    Article  PubMed  Google Scholar 

  2. Blanchard RJ, Mast M, Blanchard DC. Stimulus control of defensive reactions in the albino rat. J Comp Physiol Psychol 1975, 88: 81–88.

    Article  CAS  PubMed  Google Scholar 

  3. Wiener SG, Levine S. Behavioral and physiological responses of mother and infant squirrel monkeys to fearful stimuli. Dev Psychobiol 1992, 25: 127–136.

    Article  CAS  PubMed  Google Scholar 

  4. McFadyen J. Investigating the subcortical route to the amygdala across species and in disordered fear responses. J Exp Neurosci 2019, 13: 1179069519846445.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature 2015, 517: 284–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tamietto M, de Gelder B. Neural bases of the non-conscious perception of emotional signals. Nat Rev Neurosci 2010, 11: 697–709.

    Article  CAS  PubMed  Google Scholar 

  7. Hadjikhani N, Asberg Johnels J, Zurcher NR, Lassalle A, Guillon Q, Hippolyte L. Look me in the eyes: constraining gaze in the eye-region provokes abnormally high subcortical activation in autism. Sci Rep 2017, 7: 3163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J Neurosci 2018, 38: 347–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hakamata Y, Sato E, Komi S, Moriguchi Y, Izawa S, Murayama N, et al. The functional activity and effective connectivity of pulvinar are modulated by individual differences in threat-related attentional bias. Sci Rep 2016, 6: 34777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morris JS, Ohman A, Dolan RJ. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc Natl Acad Sci USA 1999, 96: 1680–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tamietto M, Pullens P, de Gelder B, Weiskrantz L, Goebel R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr Biol 2012, 22: 1449–1455.

    Article  CAS  PubMed  Google Scholar 

  12. Pessoa L, Adolphs R. Emotion processing and the amygdala: from a “low road” to “many roads” of evaluating biological significance. Nat Rev Neurosci 2010, 11: 773–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun 2015, 6: 6756.

    Article  CAS  PubMed  Google Scholar 

  14. Cooper HM, Parvopassu F, Herbin M, Magnin M. Neuroanatomical pathways linking vision and olfaction in mammals. Psychoneuroendocrinology 1994, 19: 623–639.

    Article  CAS  PubMed  Google Scholar 

  15. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 2006, 497: 326–349.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luan L, Ren C, Wang W, Nan Y, Gao J, Pu M. Morphological properties of medial amygdala-projecting retinal ganglion cells in the Mongolian gerbil. Sci China Life Sci 2018, 61: 644–650.

    Article  PubMed  Google Scholar 

  17. Elliott AS, Weiss ML, Nunez AA. Direct retinal communication with the peri-amygdaloid area. Neuroreport 1995, 6: 806–808.

    Article  CAS  PubMed  Google Scholar 

  18. Porjesz B, Rangaswamy M, Kamarajan C, Jones KA, Padmanabhapillai A, Begleiter H. The utility of neurophysiological markers in the study of alcoholism. Clin Neurophysiol 2005, 116: 993–1018.

    Article  PubMed  Google Scholar 

  19. Matteucci MJ, Wisner DH, Gunther RA, Woolley DE. Effects of hypertonic and isotonic fluid infusion on the flash evoked potential in rats: hemorrhage, resuscitation, and hypernatremia. J Trauma 1993, 34: 1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Simoens VL, Istok E, Hyttinen S, Hirvonen A, Naatanen R, Tervaniemi M. Psychosocial stress attenuates general sound processing and duration change detection. Psychophysiology 2007, 44: 30–38.

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 1992, 2: 431–435.

    Article  CAS  PubMed  Google Scholar 

  22. Xu L, Anwyl R, Rowan MJ. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 1997, 387: 497–500.

    Article  CAS  PubMed  Google Scholar 

  23. Mitra R, Sapolsky RM. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci U S A 2008, 105: 5573–5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hui GK, Figueroa IR, Poytress BS, Roozendaal B, McGaugh JL, Weinberger NM. Memory enhancement of classical fear conditioning by post-training injections of corticosterone in rats. Neurobiol Learn Mem 2004, 81: 67–74.

    Article  CAS  PubMed  Google Scholar 

  25. Phillips RG, LeDoux JE. Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1994, 1: 34–44.

    Article  CAS  PubMed  Google Scholar 

  26. Shackman AJ, Maxwell JS, McMenamin BW, Greischar LL, Davidson RJ. Stress potentiates early and attenuates late stages of visual processing. J Neurosci 2011, 31: 1156–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gray TS, Bingaman EW. The amygdala: corticotropin-releasing factor, steroids, and stress. Crit Rev Neurobiol 1996, 10: 155–168.

    Article  CAS  PubMed  Google Scholar 

  28. Roozendaal B. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol Learn Mem 2002, 78: 578–595.

    Article  CAS  PubMed  Google Scholar 

  29. Vaney DI, Peichl L, Wässle H, Illing RB. Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Research 1981, 212: 447–453.

    Article  CAS  PubMed  Google Scholar 

  30. Beckstead RM, Frankfurter A. A direct projection from the retina to the intermediate gray layer of the superior colliculus demonstrated by anterograde transport of horseradish peroxidase in monkey, cat and rat. Exp Brain Res 1983, 52: 261–268.

    Article  CAS  PubMed  Google Scholar 

  31. Stepniewska I, Qi HX, Kaas JH. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates?. Eur J Neurosci 1999, 11: 469–480.

    Article  CAS  PubMed  Google Scholar 

  32. Berman RA, Wurtz RH. Functional identification of a pulvinar path from superior colliculus to cortical area MT. J Neurosci 2010, 30: 6342–6354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frank DW, Sabatinelli D. Human thalamic and amygdala modulation in emotional scene perception. Brain Res 2014, 1587: 69–76.

    Article  CAS  PubMed  Google Scholar 

  34. Krout KE, Loewy AD, Westby GW, Redgrave P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 2001, 431: 198–216.

    Article  CAS  PubMed  Google Scholar 

  35. Almeida I, Soares SC, Castelo-Branco M. The distinct role of the amygdala, superior colliculus and pulvinar in processing of central and peripheral snakes. PLoS One 2015, 10: e0129949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Koller K, Rafal RD, Platt A, Mitchell ND. Orienting toward threat: contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 2019, 128: 78–86.

    Article  PubMed  Google Scholar 

  37. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 2016, 133: 1–9.

    Article  PubMed  Google Scholar 

  38. Jansen BH, Zouridakis G, Brandt ME. A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol Cybern 1993, 68: 275–283.

    Article  CAS  PubMed  Google Scholar 

  39. Levine JD, Weiss ML, Rosenwasser AM, Miselis RR. Retinohypothalamic tract in the female albino rat: a study using horseradish peroxidase conjugated to cholera toxin. J Comp Neurol 1991, 306: 344–360.

    Article  CAS  PubMed  Google Scholar 

  40. Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985, 117: 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  41. Perlman WR, Webster MJ, Herman MM, Kleinman JE, Weickert CS. Age-related differences in glucocorticoid receptor mRNA levels in the human brain. Neurobiology of Aging 2007, 28: 447–458.

    Article  CAS  PubMed  Google Scholar 

  42. Trulson ME. Biological bases for the integration of appetitive and consummatory grooming behaviors in the cat: a review. Pharmacol Biochem Behav 1976, 4: 329–334.

    Article  CAS  PubMed  Google Scholar 

  43. Harris RB, Gu H, Mitchell TD, Endale L, Russo M, Ryan DH. Increased glucocorticoid response to a novel stress in rats that have been restrained. Physiol Behav 2004, 81: 557–568.

    Article  CAS  PubMed  Google Scholar 

  44. Zitnik GA, Clark BD, Waterhouse BD. Effects of intracerebroventricular corticotropin releasing factor on sensory-evoked responses in the rat visual thalamus. Brain Res 2014, 1561: 35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vagnoni E, Lourenco SF, Longo MR. Threat modulates perception of looming visual stimuli. Curr Biol 2012, 22: R826-827.

    Article  CAS  PubMed  Google Scholar 

  46. Yilmaz M, Meister M. Rapid innate defensive responses of mice to looming visual stimuli. Curr Biol 2013, 23: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  47. Cambiaghi M, Teneud L, Velikova S, Gonzalez-Rosa J J, Cursi M, Comi G, et al. Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience 2011, 185: 161–165.

    Article  CAS  PubMed  Google Scholar 

  48. Hetzler Bruce E, McLester-Davis Lauren WY, Tenpas Sadie E. Methylphenidate and alcohol effects on flash-evoked potentials, body temperature, and behavior in Long-Evans rats. Alcohol 2019, 77: 79–89.

    Article  CAS  PubMed  Google Scholar 

  49. Knippenberg JM, Maes JH, Coenen AM, van Luijtelaar GL. Influence of emotional arousal on the N150 of the auditory evoked potential from the rat amygdala. Acta Neurobiol Exp (Wars) 2009, 69: 109–118.

    Google Scholar 

  50. Knippenberg JM, Maes JH, Coenen AM, van Luijtelaar G. Effect of appetitive pavlovian conditioning on the N150 of the amygdalar auditory evoked potential in the rat. Brain Res 2009, 1267: 57–64.

    Article  CAS  PubMed  Google Scholar 

  51. Bertini C, Pietrelli M, Braghittoni D, Ladavas E. Pulvinar lesions disrupt fear-related implicit visual processing in hemianopic patients. Front Psychol 2018, 9: 2329.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0108503), the National Natural Science Foundation of China (81760251 and 81560234), and the Yunnan Provincial Natural Science Foundation (2018FB118 and KKSY201626001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkuan Wei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ni, Y., Zhou, J. et al. The Amygdala Responds Rapidly to Flashes Linked to Direct Retinal Innervation: A Flash-evoked Potential Study Across Cortical and Subcortical Visual Pathways. Neurosci. Bull. 37, 1107–1118 (2021). https://doi.org/10.1007/s12264-021-00699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00699-4

Keywords

Navigation