Skip to main content

Advertisement

Log in

Pinocembrin Promotes OPC Differentiation and Remyelination via the mTOR Signaling Pathway

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The exacerbation of progressive multiple sclerosis (MS) is closely associated with obstruction of the differentiation of oligodendrocyte progenitor cells (OPCs). To discover novel therapeutic compounds for enhancing remyelination by endogenous OPCs, we screened for myelin basic protein expression using cultured rat OPCs and a library of small-molecule compounds. One of the most effective drugs was pinocembrin, which remarkably promoted OPC differentiation and maturation without affecting cell proliferation and survival. Based on these in vitro effects, we further assessed the therapeutic effects of pinocembrin in animal models of demyelinating diseases. We demonstrated that pinocembrin significantly ameliorated the progression of experimental autoimmune encephalomyelitis (EAE) and enhanced the repair of demyelination in lysolectin-induced lesions. Further studies indicated that pinocembrin increased the phosphorylation level of mammalian target of rapamycin (mTOR). Taken together, our results demonstrated that pinocembrin promotes OPC differentiation and remyelination through the phosphorylated mTOR pathway, and suggest a novel therapeutic prospect for this natural flavonoid product in treating demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 2008, 9: 839–855.

    Article  CAS  PubMed  Google Scholar 

  2. Balabanov R, Popko B. Myelin repair: developmental myelination redux?. Nat Neurosci 2005, 8: 262–264.

    Article  CAS  PubMed  Google Scholar 

  3. Simons M, Nave KA. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb Perspect Biol 2015, 8: a020479.

    Article  PubMed  Google Scholar 

  4. Emery B, Lu QR. Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb Perspect Biol 2015, 7: a020461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science 2010, 330: 779–782.

    Article  CAS  PubMed  Google Scholar 

  6. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002, 346: 165–173.

    Article  PubMed  Google Scholar 

  7. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 1998, 18: 601–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008, 131: 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  9. Franklin RJ. Why does remyelination fail in multiple sclerosis?. Nat Rev Neurosci 2002, 3: 705–714.

    Article  CAS  PubMed  Google Scholar 

  10. Heß K, Starost L, Kieran NW, Thomas C, Vincenten MCJ, Antel J. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol 2020, 140: 359–375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Leary SM, Porter B, Thompson AJ. Multiple sclerosis: diagnosis and the management of acute relapses. Postgrad Med J 2005, 81: 302–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Compston A, Coles A. Multiple sclerosis. Lancet 2002, 359: 1221–1231.

    Article  PubMed  Google Scholar 

  13. Damal K, Stoker E, Foley JF. Optimizing therapeutics in the management of patients with multiple sclerosis: a review of drug efficacy, dosing, and mechanisms of action. Biologics 2013, 7: 247–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stuve O, Cutter GR. Multiple sclerosis drugs: how much bang for the buck?. Lancet Neurol 2015, 14: 460–461.

    Article  PubMed  Google Scholar 

  15. Lu F, Yin D, Pu Y, Liu W, Li Z, Shao Q, et al. Shikimic acid promotes oligodendrocyte precursor cell differentiation and accelerates remyelination in mice. Neurosci Bull 2019, 35: 434–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, Pompimon W, Chattipakorn N. Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl Physiol Nutr Metab 2015, 40: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  17. Sala A, Recio MC, Schinella GR, Manez S, Giner RM, Cerda-Nicolas M, et al. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur J Pharmacol 2003, 461: 53–61.

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Zheng L, Xu L, Tu J, Gu X. Pinocembrin mitigates depressive-like behaviors induced by chronic unpredictable mild stress through ameliorating neuroinflammation and apoptosis. Mol Med 2020, 26: 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang Y, Miao Y, Mir AZ, Cheng L, Wang L, Zhao L, et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. J Neurol Sci 2016, 368: 223–230.

    Article  CAS  PubMed  Google Scholar 

  20. Saad MA, Abdel Salam RM, Kenawy SA, Attia AS. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep 2015, 67: 115–122.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Wang Y, Zhao L, Cui Q, Wang Y, Du G. Pinocembrin attenuates MPP+-induced neurotoxicity by the induction of heme oxygenase-1 through ERK1/2 pathway. Neurosci Lett 2016, 612: 104–109.

    Article  CAS  PubMed  Google Scholar 

  22. Liu R, Li JZ, Song JK, Zhou D, Huang C, Bai XY, et al. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiol Aging 2014, 35: 1275–1285.

    Article  PubMed  CAS  Google Scholar 

  23. Habtemariam S. The Nrf2/HO-1 axis as targets for flavanones: Neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxid Med Cell Longev 2019, 2019: 4724920.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bertelli D, Papotti G, Bortolotti L, Marcazzan GL, Plessi M. 1H-NMR simultaneous identification of health-relevant compounds in propolis extracts. Phytochem Anal 2012, 23: 260–266

    Article  CAS  PubMed  Google Scholar 

  25. Xin M, Guo S, Zhang W, Geng Z, Liang J, Du S, et al. Chemical constituents of supercritical extracts from Alpinia officinarum and the feeding deterrent activity against Tribolium castaneum. Molecules 2017, 22.

  26. Kumar N, Biswas S, Hosur Shrungeswara A, Basu Mallik S, Hipolith Viji M, Elizabeth Mathew J, et al. Pinocembrin enriched fraction of Elytranthe parasitica (L.) Danser induces apoptosis in HCT 116 colorectal cancer cells. J Infect Chemother 2017, 23: 354–359.

  27. Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed Res Int 2013, 2013: 379850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lan X, Wang W, Li Q, Wang J. The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Mol Neurobiol 2016, 53: 1794–1801.

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Yang HG, Yuan TY, Zhao Y, Du GH. Rho kinase inhibition activity of pinocembrin in rat aortic rings contracted by angiotensin II. Chin J Nat Med 2013, 11: 258–263.

    Article  CAS  PubMed  Google Scholar 

  30. Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, et al. In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 2012, 14: 66–74.

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Gao M, Yang ZH, Du GH. Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro. Brain Res 2008, 1216: 104–115.

    Article  CAS  PubMed  Google Scholar 

  32. Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 2008, 46: 3774–3779.

    Article  CAS  PubMed  Google Scholar 

  33. Tuchinda P, Reutrakul V, Claeson P, Pongprayoon U, Sematong T, Santisuk T, et al. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry 2002, 59: 169–173.

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Xiao L, Liu X, Yang W, Shen W, Hu C, et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 2013, 61: 732–749.

    Article  PubMed  Google Scholar 

  35. Xiao L, Hu C, Yang W, Guo D, Li C, Shen W, et al. NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration. Glia 2013, 61: 2078–2099.

    Article  PubMed  Google Scholar 

  36. Yang W, Xiao L, Li C, Liu X, Liu M, Shao Q, et al. TIP30 inhibits oligodendrocyte precursor cell differentiation via cytoplasmic sequestration of Olig1. Glia 2015, 63: 684–698.

    Article  PubMed  Google Scholar 

  37. Zhao M, Sun D, Guan Y, Wang Z, Sang D, Liu M, et al. Disulfiram and diphenhydramine hydrochloride upregulate mir-30a to suppress IL-17-associated autoimmune inflammation. J Neurosci 2016, 36: 9253–9266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 2017, 18: 1801–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi Y, Shao Q, Li Z, Gonzalez GA, Lu F, Wang D, et al. Myt1L promotes differentiation of oligodendrocyte precursor cells and is necessary for remyelination after lysolecithin-induced demyelination. Neurosci Bull 2018, 34: 247–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar MA, Nair M, Hema PS, Mohan J, Santhoshkumar TR. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog 2007, 46: 231–241.

    Article  CAS  PubMed  Google Scholar 

  41. Feng R, Guo ZK, Yan CM, Li EG, Tan RX, Ge HM. Anti-inflammatory flavonoids from Cryptocarya chingii. Phytochemistry 2012, 76: 98–105.

    Article  CAS  PubMed  Google Scholar 

  42. Yu Z, Sun D, Feng J, Tan W, Fang X, Zhao M, et al. MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci 2015, 35: 6350–6365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaesser JM, Fyffe-Maricich SL. Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 2016, 283: 501–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014, 276: 29–47.

    Article  CAS  PubMed  Google Scholar 

  45. Jepson S, Vought B, Gross CH, Gan L, Austen D, Frantz JD, et al. LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions. J Biol Chem 2012, 287: 22184–22195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang H, Zhao XF, Zheng K, Qiu M. Regulation of the timing of oligodendrocyte differentiation: mechanisms and perspectives. Neurosci Bull 2013, 29: 155–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005, 8: 745–751.

    Article  CAS  PubMed  Google Scholar 

  48. Chen CH, Liao CH, Chang YL, Guh JH, Pan SL, Teng CM. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett 2012, 315: 1–11.

    Article  CAS  PubMed  Google Scholar 

  49. Bae DS, Kim YH, Pan CH, Nho CW, Samdan J, Yansan J, et al. Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages. BMB Rep 2012, 45: 108–113.

    Article  CAS  PubMed  Google Scholar 

  50. Rommelspacher H, May T, Susilo R. Beta-carbolines and tetrahydroisoquinolines: detection and function in mammals. Planta Med 1991, 57: S85-92.

    Article  CAS  PubMed  Google Scholar 

  51. de Meester C. Genotoxic potential of beta-carbolines: a review. Mutat Res 1995, 339: 139–153.

    Article  CAS  PubMed  Google Scholar 

  52. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 2015, 29: 323–331.

    Article  CAS  PubMed  Google Scholar 

  53. Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci 2015, 137: 125–132.

    Article  CAS  PubMed  Google Scholar 

  54. Shagirtha K, Bashir N, MiltonPrabu S. Neuroprotective efficacy of hesperetin against cadmium induced oxidative stress in the brain of rats. Toxicol Ind Health 2017, 33: 454–468.

    Article  CAS  PubMed  Google Scholar 

  55. Guardiola-Diaz HM, Ishii A, Bansal R. Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. Glia 2012, 60: 476–486.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benqiang Deng or Li Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q., Zhao, M., Pei, W. et al. Pinocembrin Promotes OPC Differentiation and Remyelination via the mTOR Signaling Pathway. Neurosci. Bull. 37, 1314–1324 (2021). https://doi.org/10.1007/s12264-021-00696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00696-7

Keywords

Navigation