Skip to main content
Log in

Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder associated with both genetic and environmental risks. Neuroimaging approaches have been widely employed to parse the neurophysiological mechanisms underlying ASD, and provide critical insights into the anatomical, functional, and neurochemical changes. We reviewed recent advances in neuroimaging studies that focused on ASD by using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-positron emission tomography (SPECT). Longitudinal structural MRI has delineated an abnormal developmental trajectory of ASD that is associated with cascading neurobiological processes, and functional MRI has pointed to disrupted functional neural networks. Meanwhile, PET and SPECT imaging have revealed that metabolic and neurotransmitter abnormalities may contribute to shaping the aberrant neural circuits of ASD. Future large-scale, multi-center, multimodal investigations are essential to elucidate the neurophysiological underpinnings of ASD, and facilitate the development of novel diagnostic biomarkers and better-targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. APA. Diagnostic and Statistical Manual of Mental Disorders. Fifth Edition. Washington, DC: American Psychiatric Association, 2013.

  2. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med 2015, 45: 601–613.

    CAS  PubMed  Google Scholar 

  3. Zhou H, Xu X, Yan W, Zou X, Wu L, Luo X. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci Bull 2020, 36: 961–971.

    PubMed  Google Scholar 

  4. Buescher AV, Cidav Z, Knapp M, Mandell DS. Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr 2014, 168: 721–728.

    PubMed  Google Scholar 

  5. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011, 68: 1095–1102.

    PubMed  PubMed Central  Google Scholar 

  6. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 2015, 87: 1215–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li C, Zhou H, Wang T, Long S, Du X, Xu X, et al. Performance of the autism spectrum rating scale and social responsiveness scale in identifying autism spectrum disorder among cases of intellectual disability. Neurosci Bull 2018, 34: 972–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet 2018, 392: 508–520.

    PubMed  PubMed Central  Google Scholar 

  9. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001, 219: 316–333.

    CAS  PubMed  Google Scholar 

  10. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012, 92: 897–965.

    CAS  PubMed  Google Scholar 

  11. Lerch JP, van der Kouwe AJ, Raznahan A, Paus T, Johansen-Berg H, Miller KL, et al. Studying neuroanatomy using MRI. Nat Neurosci 2017, 20: 314–326.

    CAS  PubMed  Google Scholar 

  12. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412: 150–157.

    CAS  PubMed  Google Scholar 

  13. DeRamus TP, Kana RK. Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. Neuroimage Clin 2015, 7: 525–536.

    PubMed  Google Scholar 

  14. Liu J, Yao L, Zhang W, Xiao Y, Liu L, Gao X, et al. Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. Eur Child Adolesc Psychiatry 2017, 26: 933–945.

    PubMed  Google Scholar 

  15. Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 2010, 30: 4419–4427.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto GF, et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD working group. Am J Psychiatry 2018, 175: 359–369.

    PubMed  Google Scholar 

  17. Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005, 62: 1366–1376.

    PubMed  Google Scholar 

  18. Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage 2000, 11: 805–821.

    CAS  PubMed  Google Scholar 

  19. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 2014, 18: 177–185.

    PubMed  Google Scholar 

  20. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science 2004, 306: 443–447.

    CAS  PubMed  Google Scholar 

  21. du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, et al. Functions of the left superior frontal gyrus in humans: a lesion study. Brain 2006, 129: 3315–3328.

    PubMed  Google Scholar 

  22. Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia 2006, 44: 2547–2557.

    PubMed  Google Scholar 

  23. Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 2011, 1380: 138–145.

    CAS  PubMed  Google Scholar 

  24. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57: 245–254.

    CAS  PubMed  Google Scholar 

  25. Carper RA, Courchesne E. Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 2005, 57: 126–133.

    PubMed  Google Scholar 

  26. Shen MD, Nordahl CW, Young GS, Wootton-Gorges SL, Lee A, Liston SE, et al. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain 2013, 136: 2825–2835.

    PubMed  PubMed Central  Google Scholar 

  27. Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry 2012, 169: 589–600.

    PubMed  PubMed Central  Google Scholar 

  28. Solso S, Xu R, Proudfoot J, Hagler DJ Jr, Campbell K, Venkatraman V, et al. on tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol Psychiatry 2016, 79: 676–684.

    PubMed  Google Scholar 

  29. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 2017, 542: 348–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohta H, Nordahl CW, Iosif AM, Lee A, Rogers S, Amaral DG. Increased surface area, but not cortical thickness, in a subset of young boys with autism spectrum disorder. Autism Res 2016, 9: 232–248.

    PubMed  Google Scholar 

  31. Shen MD, Kim SH, McKinstry RC, Gu H, Hazlett HC, Nordahl CW, et al. Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism. Biol Psychiatry 2017, 82: 186–193.

    PubMed  PubMed Central  Google Scholar 

  32. Shen MD, Nordahl CW, Li DD, Lee A, Angkustsiri K, Emerson RW, et al. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. Lancet Psychiatry 2018, 5: 895–904.

    PubMed  PubMed Central  Google Scholar 

  33. Hazlett HC, Poe MD, Gerig G, Styner M, Chappell C, Smith RG, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 2011, 68: 467–476.

    PubMed  PubMed Central  Google Scholar 

  34. Martínez-Cerdeño V, Noctor SC, Kriegstein AR. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 2006, 16(Suppl 1): i152-161.

    PubMed  Google Scholar 

  35. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell 2011, 146: 18–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 1995, 18: 383–388.

    CAS  PubMed  Google Scholar 

  37. Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry 2017, 22: 820–835.

    CAS  PubMed  Google Scholar 

  38. Wang M, Wei PC, Lim CK, Gallina IS, Marshall S, Marchetto MC, et al. Increased neural progenitor proliferation in a hiPSC model of autism induces replication stress-associated genome instability. Cell Stem Cell 2020, 26(221–233): e226.

    Google Scholar 

  39. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 2015, 162: 375–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Muhle RA, Reed HE, Stratigos KA, Veenstra-VanderWeele J. The emerging clinical neuroscience of autism spectrum disorder: a review. JAMA Psychiatry 2018, 75: 514–523.

    PubMed  Google Scholar 

  41. Kohli JS, Kinnear MK, Martindale IA, Carper RA, Müller RA. Regionally decreased gyrification in middle-aged adults with autism spectrum disorders. Neurology 2019, 93: e1900–e1905.

    PubMed  PubMed Central  Google Scholar 

  42. Kohli JS, Kinnear MK, Fong CH, Fishman I, Carper RA, Müller RA. Local cortical gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents. Cereb Cortex 2019, 29: 2412–2423.

    PubMed  Google Scholar 

  43. White T, Su S, Schmidt M, Kao CY, Sapiro G. The development of gyrification in childhood and adolescence. Brain Cogn 2010, 72: 36–45.

    PubMed  Google Scholar 

  44. Van Essen DC. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 1997, 385: 313–318.

    PubMed  Google Scholar 

  45. Reillo I, de Juan Romero C, García-Cabezas M, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 2011, 21: 1674–1694.

    PubMed  Google Scholar 

  46. Postema MC, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, et al. Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat Commun 2019, 10: 4958.

    PubMed  PubMed Central  Google Scholar 

  47. Geschwind N, Galaburda AM. Cerebral lateralization. Biological mechanisms, associations, and pathology: II. A hypothesis and a program for research. Arch Neurol 1985, 42: 521–552.

  48. Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, et al. Abnormal lateralization of functional connectivity between language and default mode regions in autism. Mol Autism 2014, 5: 8.

    PubMed  PubMed Central  Google Scholar 

  49. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin 2015, 7: 631–639.

    PubMed  PubMed Central  Google Scholar 

  50. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 2001, 49: 655–664.

    CAS  PubMed  Google Scholar 

  51. Foster NE, Doyle-Thomas KA, Tryfon A, Ouimet T, Anagnostou E, Evans AC, et al. Structural gray matter differences during childhood development in autism spectrum disorder: a multimetric approach. Pediatr Neurol 2015, 53: 350–359.

    PubMed  Google Scholar 

  52. Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, et al. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 2015, 138: 2046–2058.

    PubMed  PubMed Central  Google Scholar 

  53. Haar S, Berman S, Behrmann M, Dinstein I. Anatomical Abnormalities in Autism?. Cereb Cortex 2016, 26: 1440–1452.

    PubMed  Google Scholar 

  54. Nordahl CW, Iosif AM, Young GS, Perry LM, Dougherty R, Lee A, et al. Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Mol Autism 2015, 6: 26.

    PubMed  PubMed Central  Google Scholar 

  55. Schumann CM, Barnes CC, Lord C, Courchesne E. Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 2009, 66: 942–949.

    PubMed  PubMed Central  Google Scholar 

  56. Qiu T, Chang C, Li Y, Qian L, Xiao CY, Xiao T, et al. Two years changes in the development of caudate nucleus are involved in restricted repetitive behaviors in 2-5-year-old children with autism spectrum disorder. Dev Cogn Neurosci 2016, 19: 137–143.

    PubMed  PubMed Central  Google Scholar 

  57. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron 2014, 83: 518–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Barnea-Goraly N, Frazier TW, Piacenza L, Minshew NJ, Keshavan MS, Reiss AL, et al. A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism. Prog Neuropsychopharmacol Biol Psychiatry 2014, 48: 124–128.

    PubMed  Google Scholar 

  59. Pote I, Wang S, Sethna V, Blasi A, Daly E, Kuklisova-Murgasova M, et al. Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood. Autism Res 2019, 12: 614–627.

    PubMed  PubMed Central  Google Scholar 

  60. Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J Neurosci 2010, 30: 14595–14609.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011, 69: 893–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012, 4: 147ra111.

  63. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006, 51: 527–539.

    CAS  PubMed  Google Scholar 

  64. Sundaram SK, Kumar A, Makki MI, Behen ME, Chugani HT, Chugani DC. Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex 2008, 18: 2659–2665.

    PubMed  PubMed Central  Google Scholar 

  65. Langen M, Leemans A, Johnston P, Ecker C, Daly E, Murphy CM, et al. Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography. Cortex 2012, 48: 183–193.

    PubMed  Google Scholar 

  66. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010, 35: 147–168.

    PubMed  Google Scholar 

  67. Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord 2019, 11: 32.

    PubMed  PubMed Central  Google Scholar 

  68. Catani M, Dell'Acqua F, Budisavljevic S, Howells H, Thiebaut de Schotten M, Froudist-Walsh S, et al. Frontal networks in adults with autism spectrum disorder. Brain 2016, 139: 616–630.

  69. Supekar K, Kochalka J, Schaer M, Wakeman H, Qin S, Padmanabhan A, et al. Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism. Brain 2018, 141: 2795–2805.

    PubMed  PubMed Central  Google Scholar 

  70. Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59: 184–192.

    CAS  PubMed  Google Scholar 

  71. Bedford SA, Park MTM, Devenyi GA, Tullo S, Germann J, Patel R, et al. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol Psychiatry 2020, 25: 614–628.

    PubMed  Google Scholar 

  72. Raichle ME. The restless brain: how intrinsic activity organizes brain function. Philos Trans R Soc Lond B Biol Sci 2015, 370: 20140172. https://doi.org/10.1098/rstb.2014.0172.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci 2013, 17: 666–682.

    PubMed  PubMed Central  Google Scholar 

  74. Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C, et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 2013, 70: 869–879.

    PubMed  PubMed Central  Google Scholar 

  75. Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, Fishman I, et al. Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cereb Cortex 2016, 26: 4034–4045.

    PubMed  PubMed Central  Google Scholar 

  76. Plitt M, Barnes KA, Wallace GL, Kenworthy L, Martin A. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism. Proc Natl Acad Sci U S A 2015, 112: E6699-6706.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Elton A, Di Martino A, Hazlett HC, Gao W. Neural connectivity evidence for a categorical-dimensional hybrid model of autism spectrum disorder. Biol Psychiatry 2016, 80: 120–128.

    PubMed  Google Scholar 

  78. Doyle-Thomas KA, Lee W, Foster NE, Tryfon A, Ouimet T, Hyde KL, et al. Atypical functional brain connectivity during rest in autism spectrum disorders. Ann Neurol 2015, 77: 866–876.

    PubMed  Google Scholar 

  79. Holiga Š, Hipp JF, Chatham CH, Garces P, Spooren W, D'Ardhuy XL, et al. Patients with autism spectrum disorders display reproducible functional connectivity alterations. Sci Transl Med 2019, 11: eaat9223. doi: https://doi.org/10.1126/scitranslmed.aat9223.

  80. Oldehinkel M, Mennes M, Marquand A, Charman T, Tillmann J, Ecker C, et al. Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: results from the EU-AIMS longitudinal European autism project. Biol Psychiatry Cogn Neurosci Neuroimaging 2019, 4: 260–270.

    PubMed  Google Scholar 

  81. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 2015, 16: 55–61.

    CAS  PubMed  Google Scholar 

  82. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008, 1124: 1–38.

    PubMed  Google Scholar 

  83. Bethlehem RAI, Lombardo MV, Lai MC, Auyeung B, Crockford SK, Deakin J, et al. Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women. Transl Psychiatry 2017, 7: e1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Andrews-Hanna JR. The brain’s default network and its adaptive role in internal mentation. Neuroscientist 2012, 18: 251–270.

    Google Scholar 

  85. Yerys BE, Gordon EM, Abrams DN, Satterthwaite TD, Weinblatt R, Jankowski KF, et al. Default mode network segregation and social deficits in autism spectrum disorder: Evidence from non-medicated children. Neuroimage Clin 2015, 9: 223–232.

    PubMed  PubMed Central  Google Scholar 

  86. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007, 17: 103–111.

    CAS  PubMed  Google Scholar 

  87. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009, 33: 279–296.

    PubMed  Google Scholar 

  88. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, et al. Mapping early brain development in autism. Neuron 2007, 56: 399–413.

    CAS  PubMed  Google Scholar 

  89. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007, 27: 2349–2356.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002, 3: 201–215.

    CAS  PubMed  Google Scholar 

  91. Watanabe T, Rees G. Brain network dynamics in high-functioning individuals with autism. Nat Commun 2017, 8: 16048.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 2015, 18: 302–309.

    CAS  PubMed  Google Scholar 

  93. Dickie EW, Ameis SH, Shahab S, Calarco N, Smith DE, Miranda D, et al. Personalized intrinsic network topography mapping and functional connectivity deficits in autism spectrum disorder. Biol Psychiatry 2018, 84: 278–286.

    PubMed  PubMed Central  Google Scholar 

  94. Shou XJ, Xu XJ, Zeng XZ, Liu Y, Yuan HS, Xing Y, et al. A volumetric and functional connectivity MRI study of brain arginine-vasopressin pathways in autistic children. Neurosci Bull 2017, 33: 130–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L, et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med 2017, 9: eaag2882. doi: https://doi.org/10.1126/scitranslmed.aag2882.

  96. Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 2005, 15: 225–230.

    CAS  PubMed  Google Scholar 

  97. Hong SJ, Vos de Wael R, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, et al. Atypical functional connectome hierarchy in autism. Nat Commun 2019, 10: 1022.

  98. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992, 89: 212–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jann K, Hernandez LM, Beck-Pancer D, McCarron R, Smith RX, Dapretto M, et al. Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder. Brain Behav 2015, 5: e00358.

    PubMed  PubMed Central  Google Scholar 

  100. Peterson BS, Zargarian A, Peterson JB, Goh S, Sawardekar S, Williams SCR, et al. Hyperperfusion of Frontal White and Subcortical Gray Matter in Autism Spectrum Disorder. Biol Psychiatry 2019, 85: 584–595.

    PubMed  Google Scholar 

  101. Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 1998, 20: 271–276.

    CAS  PubMed  Google Scholar 

  102. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000, 41: 661–681.

    CAS  PubMed  Google Scholar 

  103. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 2000, 97: 9226–9233.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000, 20: 423–451.

    CAS  PubMed  Google Scholar 

  105. Tian M, He X, Jin C, He X, Wu S, Zhou R, et al. Transpathology: molecular imaging-based pathology. Eur J Nucl Med Mol Imaging 2021, https://doi.org/10.1007/s00259-021-05234-1.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008, 29: 193–207.

    PubMed  Google Scholar 

  107. Mitelman SA, Bralet MC, Mehmet Haznedar M, Hollander E, Shihabuddin L, Hazlett EA, et al. Positron emission tomography assessment of cerebral glucose metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2018, 12: 532–546.

    PubMed  PubMed Central  Google Scholar 

  108. Dichter GS. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin Neurosci 2012, 14: 319–351.

    PubMed  PubMed Central  Google Scholar 

  109. Pfefferbaum A, Chanraud S, Pitel AL, Müller-Oehring E, Shankaranarayanan A, Alsop DC, et al. Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cereb Cortex 2011, 21: 233–244.

    PubMed  Google Scholar 

  110. Davey CG, Pujol J, Harrison BJ. Mapping the self in the brain’s default mode network. Neuroimage 2016, 132: 390–397.

    PubMed  Google Scholar 

  111. Mitelman SA, Buchsbaum MS, Young DS, Haznedar MM, Hollander E, Shihabuddin L, et al. Increased white matter metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2018, 12: 1290–1305.

    PubMed  Google Scholar 

  112. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci 2012, 13: 336–349.

    CAS  PubMed  Google Scholar 

  113. Brooks JO 3rd, Wang PW, Bonner JC, Rosen AC, Hoblyn JC, Hill SJ, et al. Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder. J Psychiatr Res 2009, 43: 181–188.

    PubMed  Google Scholar 

  114. Whitaker-Azmitia PM. Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism?. Int J Dev Neurosci 2005, 23: 75–83.

    CAS  PubMed  Google Scholar 

  115. Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience 2014, 267: 1–10.

    CAS  PubMed  Google Scholar 

  116. Chugani DC, Chugani HT, Wiznitzer M, Parikh S, Evans PA, Hansen RL, et al. Efficacy of low-dose buspirone for restricted and repetitive behavior in young children with autism spectrum disorder: a randomized trial. J Pediatr 2016, 170(45–53): e41-e44.

    Google Scholar 

  117. Reddihough DS, Marraffa C, Mouti A, O’Sullivan M, Lee KJ, Orsini F, et al. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders: a randomized clinical trial. Jama 2019, 322: 1561–1569.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999, 45: 287–295.

    CAS  PubMed  Google Scholar 

  119. Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, et al. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 1997, 42: 666–669.

    CAS  PubMed  Google Scholar 

  120. Chandana SR, Behen ME, Juhász C, Muzik O, Rothermel RD, Mangner TJ, et al. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci 2005, 23: 171–182.

    CAS  PubMed  Google Scholar 

  121. Beversdorf DQ, Nordgren RE, Bonab AA, Fischman AJ, Weise SB, Dougherty DD, et al. 5-HT2 receptor distribution shown by [18F] setoperone PET in high-functioning autistic adults. J Neuropsychiatry Clin Neurosci 2012, 24: 191–197.

    CAS  PubMed  Google Scholar 

  122. Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature 2016, 532: 334–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yonan AL, Alarcón M, Cheng R, Magnusson PK, Spence SJ, Palmer AA, et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet 2003, 73: 886–897.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Makkonen I, Riikonen R, Kokki H, Airaksinen MM, Kuikka JT. Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev Med Child Neurol 2008, 50: 593–597.

    PubMed  Google Scholar 

  125. Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 2010, 67: 59–68.

    CAS  PubMed  Google Scholar 

  126. Murphy DG, Daly E, Schmitz N, Toal F, Murphy K, Curran S, et al. Cortical serotonin 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: an in vivo SPECT study. Am J Psychiatry 2006, 163: 934–936.

    PubMed  Google Scholar 

  127. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT. The social motivation theory of autism. Trends Cogn Sci 2012, 16: 231–239.

    PubMed  PubMed Central  Google Scholar 

  128. Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Cohen RM. Low medial prefrontal dopaminergic activity in autistic children. Lancet 1997, 350: 638.

    CAS  PubMed  Google Scholar 

  129. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation–a possible prelude to violence. Science 2000, 289: 591–594.

    CAS  PubMed  Google Scholar 

  130. Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition?. Nat Rev Neurosci 2002, 3: 715–727.

    CAS  PubMed  Google Scholar 

  131. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003, 2: 255–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pizzarelli R, Cherubini E. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011, 2011: 297153.

    PubMed  PubMed Central  Google Scholar 

  133. Mori T, Mori K, Fujii E, Toda Y, Miyazaki M, Harada M, et al. Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Dev 2012, 34: 648–654.

    PubMed  Google Scholar 

  134. Fung LK, Flores RE, Gu M, Sun KL, James D, Schuck RK, et al. Thalamic and prefrontal GABA concentrations but not GABA(A) receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol Psychiatry 2020, https://doi.org/10.1038/s41380-020-0756-y.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Luna B, Minshew NJ, Garver KE, Lazar NA, Thulborn KR, Eddy WF, et al. Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology 2002, 59: 834–840.

    CAS  PubMed  Google Scholar 

  136. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 2014, 10: e1004580.

    PubMed  PubMed Central  Google Scholar 

  137. Fatemi SH, Wong DF, Brašić JR, Kuwabara H, Mathur A, Folsom TD, et al. Metabotropic glutamate receptor 5 tracer [(18)F]-FPEB displays increased binding potential in postcentral gyrus and cerebellum of male individuals with autism: a pilot PET study. Cerebellum Ataxias 2018, 5: 3.

    PubMed  PubMed Central  Google Scholar 

  138. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2012, 11: 777–807.

    PubMed  PubMed Central  Google Scholar 

  139. Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage 2010, 49: 2924–2932.

    CAS  PubMed  Google Scholar 

  140. Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018, 23: 36–47.

    CAS  PubMed  Google Scholar 

  141. Zürcher NR, Loggia ML, Mullett JE, Tseng C, Bhanot A, Richey L, et al. [(11)C]PBR28 MR-PET imaging reveals lower regional brain expression of translocator protein (TSPO) in young adult males with autism spectrum disorder. Mol Psychiatry 2020, https://doi.org/10.1038/s41380-020-0682-z.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial. JAMA Pediatr 2019, 173: 446–454.

    PubMed  PubMed Central  Google Scholar 

  143. Scassellati B, Boccanfuso L, Huang CM, Mademtzi M, Qin M, Salomons N, et al. Improving social skills in children with ASD using a long-term, in-home social robot. Sci Robot 2018, 3: eaat7544. https://doi.org/10.1126/scirobotics.aat7544.

  144. Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010, 65: 768–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ajram LA, Horder J, Mendez MA, Galanopoulos A, Brennan LP, Wichers RH, et al. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry 2017, 7: e1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Greene RK, Spanos M, Alderman C, Walsh E, Bizzell J, Mosner MG, et al. The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder. J Neurodev Disord 2018, 10: 12.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Linke AC, Olson L, Gao Y, Fishman I, Müller RA. Psychotropic medication use in autism spectrum disorders may affect functional brain connectivity. Biol Psychiatry Cogn Neurosci Neuroimaging 2017, 2: 518–527.

    PubMed  PubMed Central  Google Scholar 

  148. Hegarty JP 2nd, Ferguson BJ, Zamzow RM, Rohowetz LJ, Johnson JD, Christ SE, et al. Beta-adrenergic antagonism modulates functional connectivity in the default mode network of individuals with and without autism spectrum disorder. Brain Imaging Behav 2017, 11: 1278–1289.

    PubMed  Google Scholar 

  149. Alaerts K, Bernaerts S, Vanaudenaerde B, Daniels N, Wenderoth N. Amygdala-hippocampal connectivity is associated with endogenous levels of oxytocin and can be altered by exogenously administered oxytocin in adults with autism. Biol Psychiatry Cogn Neurosci Neuroimaging 2019, 4: 655–663.

    PubMed  Google Scholar 

  150. Murdaugh DL, Maximo JO, Kana RK. Changes in intrinsic connectivity of the brain’s reading network following intervention in children with autism. Hum Brain Mapp 2015, 36: 2965–2979.

    PubMed  PubMed Central  Google Scholar 

  151. Maximo JO, Murdaugh DL, O’Kelley S, Kana RK. Changes in intrinsic local connectivity after reading intervention in children with autism. Brain Lang 2017, 175: 11–17.

    PubMed  Google Scholar 

  152. Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsunobu N, et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain 2015, 138: 3400–3412.

    PubMed  Google Scholar 

  153. Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci U S A 2013, 110: 20953–20958.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lefevre A, Mottolese R, Redouté J, Costes N, Le Bars D, Geoffray MM, et al. Oxytocin fails to recruit serotonergic neurotransmission in the autistic brain. Cereb Cortex 2018, 28: 4169–4178.

    PubMed  Google Scholar 

  155. Fukai M, Hirosawa T, Kikuchi M, Ouchi Y, Takahashi T, Yoshimura Y, et al. Oxytocin effects on emotional response to others’ faces via serotonin system in autism: A pilot study. Psychiatry Res Neuroimaging 2017, 267: 45–50.

    PubMed  Google Scholar 

  156. Hirosawa T, Kikuchi M, Ouchi Y, Takahashi T, Yoshimura Y, Kosaka H, et al. A pilot study of serotonergic modulation after long-term administration of oxytocin in autism spectrum disorder. Autism Res 2017, 10: 821–828.

    PubMed  Google Scholar 

  157. Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci 2004, 7: 1048–1054.

    CAS  PubMed  Google Scholar 

  158. Park HR, Kim IH, Kang H, Lee DS, Kim BN, Kim DG, et al. Nucleus accumbens deep brain stimulation for a patient with self-injurious behavior and autism spectrum disorder: functional and structural changes of the brain: report of a case and review of literature. Acta Neurochir (Wien) 2017, 159: 137–143.

    Google Scholar 

  159. King JB, Prigge MBD, King CK, Morgan J, Weathersby F, Fox JC, et al. Generalizability and reproducibility of functional connectivity in autism. Mol Autism 2019, 10: 27.

    PubMed  PubMed Central  Google Scholar 

  160. Hong SJ, Vogelstein JT, Gozzi A, Bernhardt BC, Yeo BTT, Milham MP, et al. Toward neurosubtypes in autism. Biol Psychiatry 2020, 88: 111–128.

    PubMed  Google Scholar 

  161. Lombardo MV, Lai MC, Baron-Cohen S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol Psychiatry 2019, 24: 1435–1450.

    PubMed  PubMed Central  Google Scholar 

  162. Tang S, Sun N, Floris DL, Zhang X, Di Martino A, Yeo BTT. Reconciling dimensional and categorical models of autism heterogeneity: a brain connectomics and behavioral study. Biol Psychiatry 2020, 87: 1071–1082.

    PubMed  Google Scholar 

  163. Courchesne E, Pramparo T, Gazestani VH, Lombardo MV, Pierce K, Lewis NE. The ASD Living Biology: from cell proliferation to clinical phenotype. Mol Psychiatry 2019, 24: 88–107.

    PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the National Key Research and the Development Program of China (2016YFA0100900) and the National Natural Science Foundation of China (81761148029, 81725009, 81425015, and 81900255).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Tian or Hong Zhang.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, K., He, X. et al. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci. Bull. 37, 1051–1071 (2021). https://doi.org/10.1007/s12264-021-00673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00673-0

Keywords

Navigation