Skip to main content
Log in

Restricted Feeding Resets Endogenous Circadian Rhythm in Female Mice Under Constant Darkness

  • Letter to the Editor
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Bu B, He W, Song L, Zhang L. Nuclear envelope protein MAN1 regulates the drosophila circadian clock via period. Neurosci Bull 2019, 35: 969–978.

    Article  CAS  Google Scholar 

  2. Panda S. Circadian physiology of metabolism. Science 2016, 354: 1008–1015.

    Article  CAS  Google Scholar 

  3. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017, 18: 164–179.

    Article  CAS  Google Scholar 

  4. Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997, 91: 1055–1064.

    Article  CAS  Google Scholar 

  5. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997, 90: 1003–1011.

    Article  CAS  Google Scholar 

  6. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 2019, 20: 49–65.

    Article  CAS  Google Scholar 

  7. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016, 354: 1004–1008.

    Article  CAS  Google Scholar 

  8. Greenhill C. Benefits of time-restricted feeding. Nat Rev Endocrinol 2018, 14: 626.

    PubMed  Google Scholar 

  9. Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN. Meal timing regulates the human circadian system. Curr Biol 2017, 27(1768–1775): e1763.

    Google Scholar 

  10. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161: 84–92.

    Article  CAS  Google Scholar 

  11. Akiyama M, Yuasa T, Hayasaka N, Horikawa K, Sakurai T, Shibata S. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur J Neurosci 2004, 20: 3054–3062.

    Article  Google Scholar 

  12. Li Z, Wang Y, Sun KK, Wang K, Sun ZS, Zhao M, et al. Sex-related difference in food-anticipatory activity of mice. Horm Behav 2015, 70: 38–46.

    Article  CAS  Google Scholar 

  13. Mei Y, Zhang J, Li Z, Teng H, Wang Y, Sun Z. Altered expressions of memory genes in food-entrained circadian rhythm. Acta Biochim Biophys Sin (Shanghai) 2018, 50: 1068–1071.

    Article  CAS  Google Scholar 

  14. White W, Timberlake W. Two meals promote entrainment of rat food-anticipatory and rest-activity rhythms. Physiol Behav 1995, 57: 1067–1074.

    Article  CAS  Google Scholar 

  15. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001, 291: 490–493.

    Article  CAS  Google Scholar 

  16. Achamrah N, Nobis S, Goichon A, Breton J, Legrand R, do Rego JL, et al. Sex differences in response to activity-based anorexia model in C57Bl/6 mice. Physiol Behav 2017, 170: 1–5.

  17. Storch KF, Weitz CJ. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 2009, 106: 6808–6813.

    Article  CAS  Google Scholar 

  18. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000, 14: 2950–2961.

    Article  CAS  Google Scholar 

  19. Mendoza J, Graff C, Dardente H, Pevet P, Challet E. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 2005, 25: 1514–1522.

    Article  CAS  Google Scholar 

  20. Naukam RJ, Curtis KS. Estradiol and body weight during temporally targeted food restriction: Central pathways and peripheral metabolic factors. Horm Behav 2019, 115: 104566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32070590, 31871191, and 32071156), and the Key Scientific Project of Guangdong Province (2018B030335001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Sheng Sun or Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 401 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Teng, H., Li, Z. et al. Restricted Feeding Resets Endogenous Circadian Rhythm in Female Mice Under Constant Darkness. Neurosci. Bull. 37, 1005–1009 (2021). https://doi.org/10.1007/s12264-021-00669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00669-w

Navigation