Skip to main content

Advertisement

Log in

Neuromodulation-Based Stem Cell Therapy in Brain Repair: Recent Advances and Future Perspectives

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Stem cell transplantation holds a promising future for central nervous system repair. Current challenges, however, include spatially and temporally defined cell differentiation and maturation, plus the integration of transplanted neural cells into host circuits. Here we discuss the potential advantages of neuromodulation-based stem cell therapy, which can improve the viability and proliferation of stem cells, guide migration to the repair site, orchestrate the differentiation process, and promote the integration of neural circuitry for functional rehabilitation. All these advantages of neuromodulation make it one potentially valuable tool for further improving the efficiency of stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015, 17: 11–22.

    Article  CAS  PubMed  Google Scholar 

  2. Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci 2002, 3: 401–409.

    Article  CAS  PubMed  Google Scholar 

  3. Huo W, Liu X, Tan C, Han Y, Kang C, Quan W. Stem cell transplantation for treating stroke: status, trends and development. Neural Regen Res 2014, 9: 1643–1648.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 2013, 70: 163–171.

    Article  PubMed  Google Scholar 

  5. Johnson MD, Miocinovic S, McIntyre CC, Vitek JL. Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 2008, 5: 294–308.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stover NP, Okun MS, Evatt ML, Raju DV, Bakay RAE, Vitek JL. Stimulation of the subthalamic nucleus in a patient with Parkinson disease and essential tremor. Archives of Neurology 2005, 62: 141–143.

    Article  PubMed  Google Scholar 

  7. Herzog J, Hamel W, Wenzelburger R, Potter M, Pinsker MO, Bartussek J, et al. Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain 2007, 130: 1608–1625.

    Article  PubMed  Google Scholar 

  8. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2016, 115: 19–38.

    Article  CAS  PubMed  Google Scholar 

  9. Vedam-Mai V, van Battum EY, Kamphuis W, Feenstra MG, Denys D, Reynolds BA, et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry 2012, 17(124–131): 115.

    Article  Google Scholar 

  10. Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007, 55: 187–199.

    Article  CAS  PubMed  Google Scholar 

  11. Medina FJ, Tunez I. Mechanisms and pathways underlying the therapeutic effect of transcranial magnetic stimulation. Rev Neurosci 2013, 24: 507–525.

    Article  PubMed  Google Scholar 

  12. Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 2011, 93: 59–98.

    Article  PubMed  Google Scholar 

  13. Denslow S, Lomarev M, George MS, Bohning DE. Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 2005, 57: 752–760.

    Article  PubMed  Google Scholar 

  14. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001, 21: RC157.

  15. Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003, 126: 2609–2615.

    Article  PubMed  Google Scholar 

  16. Brys M, Fox MD, Agarwal S, Biagioni M, Dacpano G, Kumar P, et al. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: a randomized trial. Neurology 2016, 87: 1907–1915.

    Article  PubMed  PubMed Central  Google Scholar 

  17. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 2007, 62: 1208–1216.

    Article  PubMed  Google Scholar 

  18. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist 2011, 17: 37–53.

    Article  PubMed  Google Scholar 

  19. Medeiros LF, de Souza IC, Vidor LP, de Souza A, Deitos A, Volz MS, et al. Neurobiological effects of transcranial direct current stimulation: A review. Front Psychiatry 2012, 3: 110.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuo MF, Grosch J, Fregni F, Paulus W, Nitsche MA. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci 2007, 27: 14442–14447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003, 553: 293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci 2004, 19: 2720–2726.

    Article  PubMed  Google Scholar 

  23. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017, 128: 56–92.

    Article  PubMed  Google Scholar 

  24. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010, 66: 681–694.

    Article  CAS  PubMed  Google Scholar 

  25. Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry JF, et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 2019, 101(1109–1116): e1105.

    Google Scholar 

  26. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 2014, 17: 322–329.

    Article  CAS  PubMed  Google Scholar 

  27. Niu L, Guo Y, Lin Z, Shi Z, Bian T, Qi L, et al. Noninvasive ultrasound deep brain stimulation of nucleus accumbens induces behavioral avoidance. Sci China Life Sci 2020, 63: 1–9.

    Article  Google Scholar 

  28. Lee W, Croce P, Margolin RW, Cammalleri A, Yoon K, Yoo SS. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci 2018, 19: 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gibson BC, Sanguinetti JL, Badran BW, Yu AB, Klein EP, Abbott CC, et al. Increased excitability induced in the primary motor cortex by transcranial ultrasound stimulation. Front Neurol 2018, 9: 1007.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol 2019, 319: 112963.

    Article  PubMed  Google Scholar 

  31. Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, et al. Oscillating field stimulation for complete spinal cord injury in humans: a Phase 1 trial. J Neurosurg Spine 2005, 2: 3–10.

    Article  PubMed  Google Scholar 

  32. Li L, El-Hayek YH, Liu BS, Chen YH, Gomez E, Wu XH, et al. Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 2008, 26: 2193–2200.

    Article  CAS  PubMed  Google Scholar 

  33. Ariza CA, Fleury AT, Tormos CJ, Petruk V, Chawla S, Oh J, et al. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev Rep 2010, 6: 585–600.

    Article  PubMed  Google Scholar 

  34. Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 1996, 109(Pt 1): 199–207.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Calafiore M, Zeng Q, Zhang X, Huang Y, Li RA, et al. Electrically guiding migration of human induced pluripotent stem cells. Stem Cell Rev Rep 2011, 7: 987–996.

    Article  PubMed  Google Scholar 

  36. Li Y, Weiss M, Yao L. Directed migration of embryonic stem cell-derived neural cells in an applied electric field. Stem Cell Rev Rep 2014, 10: 653–662.

    Article  CAS  PubMed  Google Scholar 

  37. Feng JF, Liu J, Zhang XZ, Zhang L, Jiang JY, Nolta J, et al. Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells 2012, 30: 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang HF, Lee YS, Tang TK, Cheng JY. Pulsed DC electric field-induced differentiation of cortical neural precursor cells. PLoS One 2016, 11: e0158133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhao H, Steiger A, Nohner M, Ye H. Specific intensity direct current (DC) electric field improves neural stem cell migration and enhances differentiation towards betaIII-tubulin+ neurons. PLoS One 2015, 10: e0129625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kobelt LJ, Wilkinson AE, McCormick AM, Willits RK, Leipzig ND. Short duration electrical stimulation to enhance neurite outgrowth and maturation of adult neural stem progenitor cells. Ann Biomed Eng 2014, 42: 2164–2176.

    Article  PubMed  Google Scholar 

  41. Wang M, Li P, Liu M, Song W, Wu Q, Fan Y. Potential protective effect of biphasic electrical stimulation against growth factor-deprived apoptosis on olfactory bulb neural progenitor cells through the brain-derived neurotrophic factor-phosphatidylinositol 3’-kinase/Akt pathway. Exp Biol Med (Maywood) 2013, 238: 951–959.

    Article  CAS  Google Scholar 

  42. Chang KA, Kim JW, Kim JA, Lee SE, Kim S, Suh WH, et al. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS One 2011, 6: e18738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 2014, 35: 6219–6235.

    Article  CAS  PubMed  Google Scholar 

  44. Kim EC, Leesungbok R, Lee SW, Lee HW, Park SH, Mah SJ, et al. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics 2015, 36: 267–276.

    Article  CAS  PubMed  Google Scholar 

  45. Prasad A, Teh DBL, Blasiak A, Chai C, Wu Y, Gharibani PM, et al. Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep 2017, 7: 6743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nakamichi N, Ishioka Y, Hirai T, Ozawa S, Tachibana M, Nakamura N, et al. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism. J Neurosci Res 2009, 87: 2406–2417.

    Article  CAS  PubMed  Google Scholar 

  47. Muller MB, Toschi N, Kresse AE, Post A, Keck ME. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 2000, 23: 205–215.

    Article  CAS  PubMed  Google Scholar 

  48. Chen YH, Zhang RG, Xue F, Wang HN, Chen YC, Hu GT, et al. Quetiapine and repetitive transcranial magnetic stimulation ameliorate depression-like behaviors and up-regulate the proliferation of hippocampal-derived neural stem cells in a rat model of depression: The involvement of the BDNF/ERK signal pathway. Pharmacol Biochem Behav 2015, 136: 39–46.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng Y, Dai Y, Zhu X, Xu H, Cai P, Xia R, et al. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains. Neuroreport 2015, 26: 896–902.

    Article  PubMed  Google Scholar 

  50. Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int 2013, 62: 418–424.

    Article  CAS  PubMed  Google Scholar 

  51. Cho H, Seo YK, Yoon HH, Kim SC, Kim SM, Song KY, et al. Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnol Prog 2012, 28: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  52. Sun LY, Hsieh DK, Yu TC, Chiu HT, Lu SF, Luo GH, et al. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 2009, 30: 251–260.

    Article  CAS  PubMed  Google Scholar 

  53. Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 2008, 26: 1250–1255.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Ding J, Duan W. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells. J Biol Phys 2006, 32: 1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen C, Ma Q, Liu C, Deng P, Zhu G, Zhang L, et al. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci Rep 2014, 4: 5103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 2008, 215: 129–139.

    Article  CAS  PubMed  Google Scholar 

  57. Lee IC, Lo TL, Young TH, Li YC, Chen NG, Chen CH, et al. Differentiation of neural stem/progenitor cells using low-intensity ultrasound. Ultrasound Med Biol 2014, 40: 2195–2206.

    Article  PubMed  Google Scholar 

  58. Lv Y, Zhao P, Chen G, Sha Y, Yang L. Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett 2013, 35: 2201–2212.

    Article  CAS  PubMed  Google Scholar 

  59. Lee IC, Wu HJ, Liu HL. Dual-frequency ultrasound induces neural stem/progenitor cell differentiation and growth factor utilization by enhancing stable cavitation. ACS Chem Neurosci 2019, 10: 1452–1461.

    Article  CAS  PubMed  Google Scholar 

  60. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005, 28: 223–250.

    Article  CAS  PubMed  Google Scholar 

  61. Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 2013, 75: 339–363.

    Article  CAS  PubMed  Google Scholar 

  62. Christian KM, Song H, Ming GL. Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 2014, 37: 243–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 2009, 25: 253–275.

    Article  CAS  PubMed  Google Scholar 

  64. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004, 44: 399–421.

    Article  CAS  PubMed  Google Scholar 

  65. Nuninga JO, Mandl RCW, Boks MP, Bakker S, Somers M, Heringa SM, et al. Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry 2019.

  66. Van Den Bossche MJA, Emsell L, Dols A, Vansteelandt K, De Winter FL, Van den Stock J, et al. Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. Transl Psychiatry 2019, 9: 191.

    Article  CAS  Google Scholar 

  67. Liu A, Jain N, Vyas A, Lim LW. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. Elife 2015, 4.

  68. Magdaleno-Madrigal VM, Pantoja-Jimenez CR, Bazaldua A, Fernandez-Mas R, Almazan-Alvarado S, Bolanos-Alejos F, et al. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis. Behav Brain Res 2016, 314: 65–76.

    Article  PubMed  Google Scholar 

  69. Pohodich AE, Yalamanchili H, Raman AT, Wan YW, Gundry M, Hao S, et al. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity. Elife 2018, 7.

  70. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 2008, 108: 132–138.

    Article  PubMed  Google Scholar 

  71. Dela Cruz JA, Hescham S, Adriaanse B, Campos FL, Steinbusch HW, Rutten BP, et al. Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus. Brain Struct Funct 2015, 220: 3061–3066.

    Article  CAS  PubMed  Google Scholar 

  72. Khaindrava V, Salin P, Melon C, Ugrumov M, Kerkerian-Le-Goff L, Daszuta A. High frequency stimulation of the subthalamic nucleus impacts adult neurogenesis in a rat model of Parkinson’s disease. Neurobiol Dis 2011, 42: 284–291.

    Article  PubMed  Google Scholar 

  73. Vedam-Mai V, Gardner B, Okun MS, Siebzehnrubl FA, Kam M, Aponso P, et al. Increased precursor cell proliferation after deep brain stimulation for Parkinson’s disease: a human study. PLoS One 2014, 9: e88770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ueyama E, Ukai S, Ogawa A, Yamamoto M, Kawaguchi S, Ishii R, et al. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 2011, 65: 77–81.

    Article  PubMed  Google Scholar 

  75. Lee JY, Kim HS, Kim SH, Kim HS, Cho BP. Combination of human mesenchymal stem cells and repetitive transcranial magnetic stimulation enhances neurological recovery of 6-hydroxydopamine model of Parkinsonian’s disease. Tissue Eng Regen Med 2020, 17: 67–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peng JJ, Sha R, Li MX, Chen LT, Han XH, Guo F, et al. Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke. Exp Neurol 2019, 313: 1–9.

    Article  CAS  PubMed  Google Scholar 

  77. Arias-Carrion O, Verdugo-Diaz L, Feria-Velasco A, Millan-Aldaco D, Gutierrez AA, Hernandez-Cruz A, et al. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res 2004, 78: 16–28.

    Article  CAS  PubMed  Google Scholar 

  78. Luo J, Zheng H, Zhang L, Zhang Q, Li L, Pei Z, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci 2017, 18.

  79. Guo F, Han X, Zhang J, Zhao X, Lou J, Chen H, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of MiR-25 in a rat model of focal cerebral ischemia. PLoS One 2014, 9: e109267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cullen CL, Senesi M, Tang AD, Clutterbuck MT, Auderset L, O’Rourke ME, et al. Low-intensity transcranial magnetic stimulation promotes the survival and maturation of newborn oligodendrocytes in the adult mouse brain. Glia 2019, 67: 1462–1477.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 2014, 18.

  82. Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol 2016, 279: 127–136.

    Article  PubMed  Google Scholar 

  83. Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int 2016, 2016: 2715196.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Alam MA, Subramanyam Rallabandi VP, Roy PK. Systems Biology of Immunomodulation for post-stroke neuroplasticity: Multimodal implications of pharmacotherapy and neurorehabilitation. Front Neurol 2016, 7: 94.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Monai H, Hirase H. Astrocytic calcium activation in a mouse model of tDCS-Extended discussion. Neurogenesis (Austin) 2016, 3: e1240055.

    Article  CAS  Google Scholar 

  86. Iwasa SN, Rashidi A, Sefton E, Liu NX, Popovic MR, Morshead CM. Charge-balanced electrical stimulation can modulate neural precursor cell migration in the presence of endogenous electric fields in mouse brains. eNeuro 2019, 6.

  87. Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Bjorklund A. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 1986, 65: 235–240.

    Article  CAS  PubMed  Google Scholar 

  88. Defer GL, Geny C, Ricolfi F, Fenelon G, Monfort JC, Remy P, et al. Long-term outcome of unilaterally transplanted parkinsonian patients I. Clinical approach. Brain 1996, 119(Pt 1): 41–50.

    Article  PubMed  Google Scholar 

  89. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003, 54: 403–414.

    Article  PubMed  Google Scholar 

  90. Tang M, Yan X, Tang Q, Guo R, Da P, Li D. Potential application of electrical stimulation in stem cell-based treatment against hearing loss. Neural Plast 2018, 2018: 9506387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, et al. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials 2018, 181: 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Feng JF, Liu J, Zhang L, Jiang JY, Russell M, Lyeth BG, et al. Electrical guidance of human stem cells in the rat brain. Stem Cell Reports 2017, 9: 177–189.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Krueger E, Magri LMS, Botelho AS, Bach FS, Rebellato CLK, Fracaro L, et al. Effects of low-intensity electrical stimulation and adipose derived stem cells transplantation on the time-domain analysis-based electromyographic signals in dogs with SCI. Neurosci Lett 2019, 696: 38–45.

    Article  CAS  PubMed  Google Scholar 

  94. Yang Y, Ma T, Ge J, Quan X, Yang L, Zhu S, et al. Facilitated neural differentiation of adipose tissue-derived stem cells by electrical stimulation and Nurr-1 gene transduction. Cell Transplant 2016, 25: 1177–1191.

    Article  PubMed  Google Scholar 

  95. Cui M, Ge H, Zeng H, Yan H, Zhang L, Feng H, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation and differentiation after intracerebral hemorrhage in mice. Cell Transplant 2019, 28: 568–584.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cao L, Wei D, Reid B, Zhao S, Pu J, Pan T, et al. Endogenous electric currents might guide rostral migration of neuroblasts. EMBO Rep 2013, 14: 184–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yao L, Li Y. The role of direct current electric field-guided stem cell migration in neural regeneration. Stem Cell Rev Rep 2016, 12: 365–375.

    Article  PubMed  Google Scholar 

  98. Keuters MH, Aswendt M, Tennstaedt A, Wiedermann D, Pikhovych A, Rotthues S, et al. Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain. NMR Biomed 2015, 28: 231–239.

    Article  PubMed  Google Scholar 

  99. George PM, Steinberg GK. Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 2015, 87: 297–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Byers B, Lee HJ, Liu J, Weitz AJ, Lin P, Zhang P, et al. Direct in vivo assessment of human stem cell graft-host neural circuits. Neuroimage 2015, 114: 328–337.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, et al. Epigenetic modulation of adult hippocampal neurogenesis by extremely low-frequency electromagnetic fields. Mol Neurobiol 2014, 49: 1472–1486.

    Article  CAS  PubMed  Google Scholar 

  102. Liu H, Li G, Ma C, Chen Y, Wang J, Yang Y. Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. Int J Mol Med 2018, 42: 3631–3639.

    CAS  PubMed  Google Scholar 

  103. Cao P, Wang L, Cheng Q, Sun X, Kang Q, Dai L, et al. Changes in serum miRNA-let-7 level in children with attention deficit hyperactivity disorder treated by repetitive transcranial magnetic stimulation or atomoxetine: an exploratory trial. Psychiatry Res 2019, 274: 189–194.

    Article  CAS  PubMed  Google Scholar 

  104. Cui M, Ge H, Zhao H, Zou Y, Chen Y, Feng H. Electromagnetic fields for the regulation of neural stem cells. Stem Cells Int 2017, 2017: 9898439.

    Article  PubMed  PubMed Central  Google Scholar 

  105. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999, 2: 266–270.

    Article  PubMed  Google Scholar 

  106. Crews FT, Nixon K, Wilkie ME. Exercise reverses ethanol inhibition of neural stem cell proliferation. Alcohol 2004, 33: 63–71.

    Article  CAS  PubMed  Google Scholar 

  107. Micheli L, Ceccarelli M, D’Andrea G, Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018, 143: 181–193.

    Article  CAS  PubMed  Google Scholar 

  108. Yuan TF, Paes F, Arias-Carrion O, Ferreira Rocha NB, de Sa Filho AS, Machado S. Neural mechanisms of exercise: anti-depression, neurogenesis, and serotonin signaling. CNS Neurol Disord Drug Targets 2015, 14: 1307–1311.

    Article  CAS  PubMed  Google Scholar 

  109. Sun L, Sun Q, Qi J. Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise. Rev Neurosci 2017, 28: 693–703.

    Article  PubMed  Google Scholar 

  110. Saraulli D, Costanzi M, Mastrorilli V, Farioli-Vecchioli S. The long run: Neuroprotective effects of physical exercise on adult neurogenesis from youth to old age. Curr Neuropharmacol 2017, 15: 519–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res 2017, 317: 332–339.

    Article  PubMed  Google Scholar 

  112. O’Leary JD, Hoban AE, Murphy A, O’Leary OF, Cryan JF, Nolan YM. Differential effects of adolescent and adult-initiated exercise on cognition and hippocampal neurogenesis. Hippocampus 2019, 29: 352–365.

    Article  CAS  PubMed  Google Scholar 

  113. Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 2003, 17: 2042–2046.

    Article  PubMed  Google Scholar 

  114. Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 2018, 12: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab 2016, 24: 332–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A, Feldman N, Roichman A, Illouz T, et al. L-lactate promotes adult hippocampal neurogenesis. Front Neurosci 2019, 13: 403.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lei X, Wu Y, Xu M, Jones OD, Ma J, Xu X. Physical exercise: bulking up neurogenesis in human adults. Cell Biosci 2019, 9: 74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 2011, 108: 3017–3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luo J, Hu X, Zhang L, Li L, Zheng H, Li M, et al. Physical exercise regulates neural stem cells proliferation and migration via SDF-1alpha/CXCR4 pathway in rats after ischemic stroke. Neurosci Lett 2014, 578: 203–208.

    Article  CAS  PubMed  Google Scholar 

  120. Mastrorilli V, Scopa C, Saraulli D, Costanzi M, Scardigli R, Rouault JP, et al. Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice. Brain Struct Funct 2017, 222: 2855–2876.

    Article  CAS  PubMed  Google Scholar 

  121. Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, et al. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 2007, 146: 31–40.

    Article  CAS  PubMed  Google Scholar 

  122. Jin J, Kang HM, Park C. Voluntary exercise enhances survival and migration of neural progenitor cells after intracerebral haemorrhage in mice. Brain Inj 2010, 24: 533–540.

    Article  PubMed  Google Scholar 

  123. Nam SM, Kim JW, Yoo DY, Yim HS, Kim DW, Choi JH, et al. Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose. BMC Neurosci 2014, 15: 116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Nam SM, Kim JW, Yoo DY, Choi JH, Kim W, Jung HY, et al. Effects of treadmill exercise on neural stem cells, cell proliferation, and neuroblast differentiation in the subgranular zone of the dentate gyrus in cyclooxygenase-2 knockout mice. Neurochem Res 2013, 38: 2559–2569.

    Article  CAS  PubMed  Google Scholar 

  125. Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 2004, 124: 71–79.

    Article  CAS  PubMed  Google Scholar 

  126. Chen K, Zheng Y, Wei JA, Ouyang H, Huang X, Zhang F, et al. Exercise training improves motor skill learning via selective activation of mTOR. Sci Adv 2019, 5: eaaw1888.

  127. Chen K, Zhang L, Tan M, Lai CS, Li A, Ren C, et al. Treadmill exercise suppressed stress-induced dendritic spine elimination in mouse barrel cortex and improved working memory via BDNF/TrkB pathway. Transl Psychiatry 2017, 7: e1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Key R&D Program of China (No. 2020YFA0113600 and 2017YFA0105201), National Natural Sciences Foundation of China (81822017 and 32070955). We thank our lab members for help during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjun Wang, Renjie Chai, Yan Liu or Kwok-Fai So.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, TF., Dong, Y., Zhang, L. et al. Neuromodulation-Based Stem Cell Therapy in Brain Repair: Recent Advances and Future Perspectives. Neurosci. Bull. 37, 735–745 (2021). https://doi.org/10.1007/s12264-021-00667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00667-y

Keywords

Navigation