Hierarchical Neural Prediction of Interpersonal Trust

Abstract

Exploring neural markers that predict trust behavior may help us to identify the cognitive process underlying trust decisions and to develop a new approach to promote interpersonal trust. It remains unknown how trust behavior may be predicted early in the decision process. We used electrophysiology to sample the brain activity while participants played the role of trustor in an iterative trust game. The results showed that during the trust generation stage, the trust condition led to higher frontocentral beta band activity related to cognitive inhibition compared to the distrust condition (item level). Moreover, individuals with higher frontocentral beta band activity were more likely to perform trust choices at the single-trial level (individual level). Furthermore, after receiving reciprocity feedback on trialn-1, compared to the betrayal feedback and the distrust choice, the frontocentral beta band oscillation had a stronger predictive effect regarding trust choices on trialn. These findings indicate that beta band oscillations during the decision generation stage contribute to subsequent trust choices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Balliet D, Van Lange PAM. Trust, conflict, and cooperation: A meta-analysis. Psychol Bull 2013, 139: 1090–1112.

    PubMed  Article  Google Scholar 

  2. 2.

    Glaeser EL, Laibson DI, Scheinkman JA, Soutter CL. Measuring trust. Q J Econ 2000, 115: 811–846.

    Article  Google Scholar 

  3. 3.

    Haas BW, Ishak A, Anderson IW, Filkowski MM. The tendency to trust is reflected in human brain structure. Neuroimage 2015, 107: 175–181.

    PubMed  Article  Google Scholar 

  4. 4.

    Carré JM, Baird-Rowe CD, Hariri AR. Testosterone responses to competition predict decreased trust ratings of emotionally neutral faces. Psychoneuroendocrinology 2014, 49: 79–83.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Hooper JJ, Sutherland CAM, Ewing L, Langdon R, Caruana N, Connaughton E et al. Should I trust you? autistic traits predict reduced appearance-based trust decisions. Br J Psychol 2019, 110: 617–634.

    PubMed  Article  Google Scholar 

  6. 6.

    Biasiucci A, Franceschiello B, Murray MM. Electroencephalography. Curr Biol 2019, 29: 80–85.

    Article  CAS  Google Scholar 

  7. 7.

    Karamzadeh N, Medvedev A, Azari A, Gandjbakhche A, Najafizadeh L. Capturing dynamic patterns of task-based functional connectivity with EEG. Neuroimage 2013, 66: 311–317.

    PubMed  Article  Google Scholar 

  8. 8.

    Buzsaki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 2013, 80: 751–764.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 2012, 14: 345–367.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Gross J. Analytical methods and experimental approaches for electrophysiological studies of brain oscillations. J Neurosci Methods 2014, 228: 57–66.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Berg J, Dickhaut J, McCabe K. Trust, reciprocity, and social-history. Games Econ Behav 1995, 10: 122–142.

    Article  Google Scholar 

  12. 12.

    Johnson ND, Mislin AA. Trust games: A meta-analysis. J Econ Psychol 2011, 32: 865–889.

    Article  Google Scholar 

  13. 13.

    Platt ML. Neural correlates of decisions. Curr Opin Neurobiol 2002, 12: 141–148.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kilner JM, Friston KJ, Frith CD. Predictive coding: an account of the mirror neuron system. Cogn Process 2007, 8: 159–166.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Thornton MA, Weaverdyck ME, Tamir DI. The social brain automatically predicts others’ future mental states. J Neurosci 2019, 39: 140–148.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Fu C, Yao X, Yang X, Zheng L, Li J, Wang Y. Trust game database: behavioral and EEG data from two trust games. Front Psychol 2019, 10: 2656.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wang Y, Jing Y, Zhang Z, Lin C, Valadez EA. How dispositional social risk-seeking promotes trusting strangers: evidence based on brain potentials and neural oscillations. J Exp Psychol Gen 2017, 146: 1150–1163.

    PubMed  Article  Google Scholar 

  18. 18.

    Wang Y, Zhang Z, Jing Y, Valadez EA, Simons RF. How do we trust strangers? The neural correlates of decision making and outcome evaluation of generalized trust. Soc Cogn Affect Neurosci 2016, 11: 1666–1676.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Aimone JA, Houser D. What you don’t know won’t hurt you: a laboratory analysis of betrayal aversion. Exp Econ 2012, 15: 571–588.

    Article  Google Scholar 

  20. 20.

    Bohnet I, Zeckhauser R. Trust, risk and betrayal. J Econ Behav Organ. 2004, 55: 467–484.

    Article  Google Scholar 

  21. 21.

    Rand DG. Cooperation, Fast and Slow:Meta-analytic evidence for a theory of social heuristics and self-interested deliberation. Psychol Sci 2016, 27: 1192–1206.

    PubMed  Article  Google Scholar 

  22. 22.

    Zeckhauser R, Bohnet I, Greig F, Herrmann B. Betrayal aversion: evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States. Am Econ Rev 2008, 98: 294–310.

    Article  Google Scholar 

  23. 23.

    Engel AK, Fries P. Beta-band oscillations – signaling the status quo?. Curr Opin Neurobiol 2010, 20: 156–165.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS. Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int J Psychophysiol 2013, 87: 217–233.

    PubMed  Article  Google Scholar 

  25. 25.

    Declerck CH, Boone C, Emonds G. When do people cooperate? The neuroeconomics of prosocial decision making. Brain Cogn 2013, 81: 95–117.

    PubMed  Article  Google Scholar 

  26. 26.

    Delgado MR, Frank RH, Phelps EA. Perceptions of moral character modulate the neural systems of reward during the trust game. Nat Neurosci 2005, 8: 1611–1618.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz S, Montague PR. Getting to know you: Reputation and trust in a two-person economic exchange. Science 2005, 308: 78–83.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Maurer C, Chambon V, Bourgeois-Gironde S, Leboyer M, Zalla T. The influence of prior reputation and reciprocity on dynamic trust-building in adults with and without autism spectrum disorder. Cognition 2017, 172: 1–10.

    PubMed  Article  Google Scholar 

  29. 29.

    Fouragnan E, Chierchia G, Greiner S, Neveu R, Avesani P, Coricelli G. Reputational priors magnify striatal responses to violations of trust. J Neurosci 2013, 33: 3602–3611.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007, 39: 175–191.

    PubMed  Article  Google Scholar 

  31. 31.

    Thielmann I, Hilbig BE. Trust: An integrative review from a person-situation perspective. Rev Gen Psychol 2015, 19: 249–277.

    Article  Google Scholar 

  32. 32.

    Chen J, Zhong J, Zhang Y, Li P, Zhang A, Tan Q et al. Electrophysiological correlates of processing facial attractiveness and its influence on cooperative behavior. Neurosci Lett 2012, 517: 65–70.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Pak R, McLaughlin AC, Bass B. A multi-level analysis of the effects of age and gender stereotypes on trust in anthropomorphic technology by younger and older adults. Ergonomics 2014, 57: 1277–1289.

    PubMed  Article  Google Scholar 

  34. 34.

    Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134: 9–21.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Bigdely-Shamlo N, Mullen T, Kothe C, Su K, Robbins K. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform 2015, 9: 16.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci 2004, 8: 204–210.

    PubMed  Article  Google Scholar 

  37. 37.

    Knutson B, Rick S, Wimmer E, Prelec D, Loewenstein G. Neural predictors of purchases. Neuron 2007, 53: 147–156.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Price CJ, Ramsden S, Hope TMH, Friston KJ, Seghier ML. Predicting IQ change from brain structure: a cross-validation study. Dev Cogn Neurosci 2013, 5: 172–184.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Raudenbush SW, Bryk AS. Hierarchical linear models: applications and data analysis methods. 2 ed. 2002, Thousand Oaks, CA: Sage.

  40. 40.

    Engle-Warnick J, Slonim RL. The evolution of strategies in a repeated trust game. J Econ Behav Organ 2004, 55: 553–573.

    Article  Google Scholar 

  41. 41.

    Hoffman M, Yoeli E, Nowak MA. Cooperate without looking: why we care what people think and not just what they do. Proc Natl Acad Sci U S A 2015, 112: 1727–1732.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Koscik TR, Tranel D. The human amygdala is necessary for developing and expressing normal interpersonal trust. Neuropsychologia 2011, 49: 602–611.

    PubMed  Article  Google Scholar 

  43. 43.

    Lemmers-Jansen ILJ, Krabbendam L, Veltman, DJ, Fett AKJ. Boys vs. girls: Gender differences in the neural development of trust and reciprocity depend on social context. Dev Cogn Neurosci 2017, 25: 235–245.

  44. 44.

    Badre D, Kayser AS, D’Esposito M. Frontal cortex and the discovery of abstract action rules. Neuron 2010, 66: 315–326.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wolff A, Gomez-Pilar J, Nakao T, Northoff G. Interindividual neural differences in moral decision-making are mediated by alpha power and delta/theta phase coherence. Sci Rep 2019, 9: 4432.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Ai SZ, Yin Y, Chen Y, Wang C, Sun Y, Tang X et al. Promoting subjective preferences in simple economic choices during nap. Elife 2018, 7: e40583.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Hu L, Iannetti GD. Neural indicators of perceptual variability of pain across species. Proc Natl Acad Sci U S A 2019, 116: 1782–1791.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Wagner J, Makeig S, Gola M, Neuper C, Müller-Putz GR. Distinct β band oscillatory networks subserving motor and cogntive control during gait adaptation. J Neurosci 2016, 29: 12675–12685.

    Google Scholar 

  49. 49.

    Axelrod R. Effective choice in the prisoner’s dilemma. J Conflict Resolut 1980, 24: 3–25.

    Article  Google Scholar 

  50. 50.

    Zhao K, Smillie LD. The role of interpersonal traits in social decision making: exploring sources of behavioral heterogeneity in economic games. Pers Soc Psychol Rev 2015, 19: 277–302.

    PubMed  Article  Google Scholar 

  51. 51.

    Bodmer B, Mueckschel M, Roessner V, Beste C. Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Struct Funct 2018, 223: 1797–1810.

    PubMed  Google Scholar 

  52. 52.

    Fareri DS, Chang LJ, Delgado MR. Effects of direct social experience on trust decisions and neural reward circuitry. Front Neurosci 2012, 6: 148.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Bernal B, Altman N. Neural networks of motor and cognitive inhibition are dissociated between brain hemispheres: an fMRI study. Int J Neurosci 2009, 119: 1848–1880.

    PubMed  Article  Google Scholar 

  54. 54.

    Bornstein AM, Khaw MW, Shohamy D, Daw ND. Reminders of past choices bias decisions for reward in humans. Nat Commun 2017, 8: 15958.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci 2007, 362: 1585–1599.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Cisek P, Pastor-Bernier A. On the challenges and mechanisms of embodied decisions. Philos Trans R Soc Lond B Biol Sci 2014, 369: 315–318.

    Article  Google Scholar 

  57. 57.

    Pennartz CMA, Ito R, Verschure PFMJ, Battaglia FP, Robbins TW. The hippocampal-striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci 2011, 34: 548–559.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Zhang YY, Xu L, Liang ZY, Wang K, Hou B, Zhou Y et al. Separate neural networks for gains and losses in intertemporal choice. Neurosci Bull 2018, 34: 725–735.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Li J, Shen J, Liu S, Chauvel M, Yang W, Mei J et al. Responses of patients with disorders of consciousness to habit stimulation: a quantitative EEG study. Neurosci Bull 2018, 34: 691–699.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Buser T. Digit ratios, the menstrual cycle and social preferences. Games Econ Behav 2012, 76: 457–470.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (71942002 and 31771238) and the National Social Science Foundation of China (19ZDA361).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yiwen Wang or Zhenpeng Tang or Shaobei Xiao or Johannes Hewig.

Ethics declarations

Conflict of Interests

The authors declared no conflicts of interest with respect to the authorship or the publication of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, X., Tang, Z. et al. Hierarchical Neural Prediction of Interpersonal Trust. Neurosci. Bull. (2021). https://doi.org/10.1007/s12264-021-00628-5

Download citation

Keywords

  • Interpersonal trust
  • hierarchical prediction
  • trust game
  • beta band oscillation