Sex and Death: Identification of Feedback Neuromodulation Balancing Reproduction and Survival


Some semelparous organisms in nature mate as many times as they can in a single reproductive episode before death, while most iteroparous species including humans avoid such suicidal reproductive behavior. Animals naturally pursue more sex and the possible fatal consequence of excessive sex must be orchestrated by negative feedback signals in iteroparous species, yet very little is known about the regulatory mechanisms. Here we used Drosophila male sexual behavior as a model system to study how excessive sex may kill males and how the nervous system reacts to prevent death by sex. We found that continuous sexual activity by activating the fruitless-expressing neurons induced a fixed multi-step behavioral pattern ending with male death. We further found negative feedback in the fly brain to prevent suicidal sexual behavior by expression changes of the neurotransmitters acetylcholine and gamma-aminobutyric acid, and neuropeptide F. These findings are crucial to understand the molecular underpinnings of how different organisms choose reproductive strategies and balance reproduction and survival.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Rodriguez-Manzo G. Glutamatergic transmission is involved in the long lasting sexual inhibition of sexually exhausted male rats. Pharmacol Biochem Behav 2015, 131: 64–70.

    CAS  Article  Google Scholar 

  2. 2.

    Zhang SX, Rogulja D, Crickmore MA. Dopaminergic circuitry underlying mating drive. Neuron 2016, 91: 168–181.

    CAS  Article  Google Scholar 

  3. 3.

    Phoenix CH, Chambers KC. Old age and sexual exhaustion in male rhesus macaques. Physiol Behav 1988, 44: 157–163.

    CAS  Article  Google Scholar 

  4. 4.

    Fisher DO, Dickman CR, Jones ME, Blomberg SP. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc Natl Acad Sci U S A 2013, 110: 17910.

    CAS  Article  Google Scholar 

  5. 5.

    Burtis KC, Baker BS. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 1989, 56: 997–1010.

    CAS  Article  Google Scholar 

  6. 6.

    Ryner LC, Goodwin SF, Castrillon DH, Anand A, Villella A, Baker BS, et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 1996, 87: 1079–1089.

    CAS  Article  Google Scholar 

  7. 7.

    Ito H, Fujitani K, Usui K, Shimizu-Nishikawa K, Tanaka S, Yamamoto D. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc Natl Acad Sci U S A 1996, 93: 9687–9692.

    CAS  Article  Google Scholar 

  8. 8.

    Demir E, Dickson BJ. Fruitless splicing specifies male courtship behavior in Drosophila. Cell 2005, 121: 785–794.

    CAS  Article  Google Scholar 

  9. 9.

    Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 2005, 436: 395–400.

    CAS  Article  Google Scholar 

  10. 10.

    Stockinger P, Kvitsiani D, Rotkopf S, Tirian L, Dickson BJ. Neural circuitry that governs Drosophila male courtship behavior. Cell 2005, 121: 795–807.

    CAS  Article  Google Scholar 

  11. 11.

    Cachero S, Ostrovsky AD, Yu JY, Dickson BJ, Jefferis GS. Sexual dimorphism in the fly brain. Curr Biol 2010, 20: 1589–1601.

    CAS  Article  Google Scholar 

  12. 12.

    Yu JY, Kanai MI, Demir E, Jefferis GS, Dickson BJ. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr Biol 2010, 20: 1602–1614.

    CAS  Article  Google Scholar 

  13. 13.

    Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 2014, 11: 325–332.

    CAS  Article  Google Scholar 

  14. 14.

    Clowney EJ, Iguchi S, Bussell JJ, Scheer E, Ruta V. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 2015, 87: 1036–1049.

    CAS  Article  Google Scholar 

  15. 15.

    Kallman BR, Kim H, Scott K. Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. Elife 2015, 4: e11188.

    Article  Google Scholar 

  16. 16.

    Chen D, Sitaraman D, Chen N, Jin X, Han C, Chen J, et al. Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila. Nat Commun 2017, 8: 154.

    Article  Google Scholar 

  17. 17.

    Pan Y, Meissner GW, Baker BS. Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc Natl Acad Sci U S A 2012, 109: 10065–10070.

    CAS  Article  Google Scholar 

  18. 18.

    Wu S, Guo C, Zhao H, Sun M, Chen J, Han C, et al. Drosulfakinin signaling in fruitless circuitry antagonizes P1 neurons to regulate sexual arousal in Drosophila. Nat Commun 2019, 10: 4770.

    Article  Google Scholar 

  19. 19.

    Kimura K, Hachiya T, Koganezawa M, Tazawa T, Yamamoto D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 2008, 59: 759–769.

    CAS  Article  Google Scholar 

  20. 20.

    Ho MS. A shared neural node for multiple innate behaviors in Drosophila. Neurosci Bull 2018, 34: 1103–1104.

    Article  Google Scholar 

  21. 21.

    Zhang SX, Miner LE, Boutros CL, Rogulja D, Crickmore MA. Motivation, perception, and chance converge to make a binary decision. Neuron 2018, 99: 376–388.e376.

    Article  Google Scholar 

  22. 22.

    Zhang SX, Rogulja D, Crickmore MA. Recurrent circuitry sustains Drosophila courtship drive while priming itself for satiety. Curr Biol 2019, 29: 3216–3228.e3219.

    Google Scholar 

  23. 23.

    Harvanek ZM, Lyu Y, Gendron CM, Johnson JC, Kondo S, Promislow DEL, et al. Perceptive costs of reproduction drive ageing and physiology in male Drosophila. Nat Ecol Evol 2017, 1: 152.

    Article  Google Scholar 

  24. 24.

    Flintham EO, Yoshida T, Smith S, Pavlou HJ, Goodwin SF, Carazo P, et al. Interactions between the sexual identity of the nervous system and the social environment mediate lifespan in Drosophila melanogaster. Proc Biol Sci 2018, 285: 20181450.

  25. 25.

    Guo C, Pan Y, Gong Z. Recent advances in the genetic dissection of neural circuits in Drosophila. Neurosci Bull 2019, 35: 1058–1072.

    Article  Google Scholar 

  26. 26.

    Pan Y, Robinett CC, Baker BS. Turning males on: activation of male courtship behavior in Drosophila melanogaster. PLoS One 2011, 6: e21144.

    CAS  Article  Google Scholar 

  27. 27.

    Pan Y, Baker BS. Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila. Cell 2014, 156: 236–248.

    CAS  Article  Google Scholar 

  28. 28.

    Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 2008, 454: 217–220.

    CAS  Article  Google Scholar 

  29. 29.

    Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014, 11: 338–346.

    CAS  Article  Google Scholar 

  30. 30.

    Meissner GW, Luo SD, Dias BG, Texada MJ, Baker BS. Sex-specific regulation of Lgr3 in Drosophila neurons. Proc Natl Acad Sci U S A 2016, 113: E1256–1265.

    CAS  Article  Google Scholar 

  31. 31.

    Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2012, 2: 991–1001.

    CAS  Article  Google Scholar 

  32. 32.

    Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, et al. A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 2009, 182: 1089–1100.

    CAS  Article  Google Scholar 

  33. 33.

    Shohat-Ophir G, Kaun KR, Azanchi R, Mohammed H, Heberlein U. Sexual deprivation increases ethanol intake in Drosophila. Science 2012, 335: 1351–1355.

    CAS  Article  Google Scholar 

  34. 34.

    Zer-Krispil S, Zak H, Shao L, Ben-Shaanan S, Tordjman L, Bentzur A, et al. Ejaculation induced by the activation of Crz neurons is rewarding to Drosophila Males. Curr Biol 2018, 28: 1445–1452 e1443.

    Google Scholar 

  35. 35.

    Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc Natl Acad Sci U S A 2012, 109: 20697–20702.

    CAS  Article  Google Scholar 

  36. 36.

    Liu WW, Ganguly A, Huang J, Wang YJ, Ni JFD, Gurav AS, et al. Neuropeptide F regulates courtship in Drosophila through a male-specific neuronal circuit. Elife 2019, 8: 29.

    Google Scholar 

  37. 37.

    Zhang W, Guo C, Chen D, Peng Q, Pan Y. Hierarchical control of Drosophila sleep, courtship, and feeding behaviors by male-specific P1 neurons. Neurosci Bull 2018, 34:1105–1110.

    Article  Google Scholar 

Download references


We thank the Tsinghua Fly Center and Bloomington Stock Center for the fly stocks. This work was supported by grants from the National Key R&D Program of China (2019YFA0802400), the National Natural Science Foundation of China (31970943, 31622028, and 31700920), and the Jiangsu Innovation and Entrepreneurship Team Program.

Author information



Corresponding author

Correspondence to Yufeng Pan.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 386 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Guo, C., Peng, Q. et al. Sex and Death: Identification of Feedback Neuromodulation Balancing Reproduction and Survival. Neurosci. Bull. 36, 1429–1440 (2020).

Download citation


  • Drosophila
  • Reproduction
  • Survival
  • NPF
  • GABA
  • Acetylcholine