Skip to main content
Log in

Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mitochondrial Dynamics in Zebrafish

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Dual oxidase (duox)-derived reactive oxygen species (ROS) have been correlated with neuronal polarity, cerebellar development, and neuroplasticity. However, there have not been many comprehensive studies of the effect of individual duox isoforms on central-axon regeneration in vivo. Here, we explored this question in zebrafish, an excellent model organism for central-axon regeneration studies. In our research, mutation of the duox gene with CRISPR/Cas9 significantly retarded the single-axon regeneration of the zebrafish Mauthner cell in vivo. Using deep transcriptome sequencing, we found that the expression levels of related functional enzymes in mitochondria were down-regulated in duox mutant fish. In vivo imaging showed that duox mutants had significantly disrupted mitochondrial transport and redox state in single Mauthner-cell axon. Our research data provide insights into how duox is involved in central-axon regeneration by changing mitochondrial transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019, 132: 73–82.

    CAS  PubMed  Google Scholar 

  2. Buvelot H, Jaquet V, Krause KH. Mammalian NADPH Oxidases. Methods Mol Biol 2019, 1982: 17–36.

    Google Scholar 

  3. Xu FF, Zhang ZB, Wang YY, Wang TH. Brain-derived glia maturation factor beta participates in lung injury induced by acute cerebral ischemia by increasing ROS in endothelial cells. Neurosci Bull 2018, 34: 1077–1090.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Veith C, Boots AW, Idris M, van Schooten FJ, van der Vliet A. Redox imbalance in idiopathic pulmonary fibrosis: A role for oxidant cross-talk between NADPH oxidase enzymes and mitochondria. Antioxid Redox Signal 2019, 31: 1092–1115.

  5. Marrali G, Casale F, Salamone P, Fuda G, Ilardi A, Manera U, et al. NADPH oxidases 2 activation in patients with Parkinson’s disease. Parkinsonism Relat Disord 2018, 49: 110–111.

    CAS  PubMed  Google Scholar 

  6. Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury—Promising therapeutic targets? Redox Biol 2018, 16: 285–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Park JS, Choi TI, Kim OH, Hong TI, Kim WK, Lee WJ, et al. Targeted knockout of duox causes defects in zebrafish growth, thyroid development, and social interaction. J Genet Genomics 2019, 46: 101–104.

    PubMed  Google Scholar 

  8. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 2003, 17: 1502–1504.

    CAS  PubMed  Google Scholar 

  9. Sirokmany G, Donko A, Geiszt M. Nox/Duox family of NADPH oxidases: Lessons from knockout mouse models. Trends Pharmacol Sci 2016, 37: 318–327.

    CAS  PubMed  Google Scholar 

  10. Flores MV, Crawford KC, Pullin LM, Hall CJ, Crosier KE, Crosier PS. Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem Biophys Res Commun 2010, 400: 164–168.

    CAS  PubMed  Google Scholar 

  11. Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009, 459: 996–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoo SK, Starnes TW, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 2011, 480: 109–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreno JC, Bikker H, Kempers MJE, van Trotsenburg P, Baas F, de Vijlder JJM, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N EngI J Med 2002, 347: 95–102.

    CAS  Google Scholar 

  14. Park KJ, Park HK, Kim YJ, Lee KR, Park JH, Park JH, et al. DUOX2 mutations are frequently associated with congenital hypothyroidism in the korean population. Ann Lab Med 2016, 36: 145–153.

    CAS  PubMed  Google Scholar 

  15. Han P, Zhou XH, Chang N, Xiao CL, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res 2014, 24: 1091–1107.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rieger S, Sagasti A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 2011, 9: e1000621.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen MF, Zheng BH. Axon plasticity in the mammalian central nervous system after injury. Trends Neurosci 2014, 37: 583–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Becker T, Becker CG. Axonal regeneration in zebrafish. Curr Opin Neurobiol 2014, 27: 186–191.

    CAS  PubMed  Google Scholar 

  19. Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, et al. Inhibition of KLF7-targeting microRNA 146b promotes sciatic nerve regeneration. Neurosci Bull 2018, 34: 419–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor JSH, Jack JL, Easter SS. Is the Capacity for optic-nerve regeneration related to continued retinal ganglion-cell production in the frog—a test of the hypothesis that neurogenesis and axon regeneration are obligatorily linked. Eur J Neurosci 1989, 1: 626–638.

    CAS  PubMed  Google Scholar 

  21. Nagashima M, Fujikawa C, Mawatari K, Mori Y, Kato S. HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: Its role in cell survival. Neurochem Int 2011, 58: 888–895.

    CAS  PubMed  Google Scholar 

  22. Saijilafu, Zhang BY, Zhou FQ. Signaling pathways that regulate axon regeneration. Neurosci Bull 2013, 29: 411–420.

  23. Vajn K, Plunkett JA, Tapanes-Castillo A, Oudega M. Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation. Neurosci Bull 2013, 29: 402–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mu Z, Zhang S, He C, Hou H, Liu D, Hu N, et al. Expression of SoxC transcription factors during zebrafish retinal and optic nerve regeneration. Neurosci Bull 2017, 33: 53–61.

    CAS  PubMed  Google Scholar 

  25. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin YS, Ben-Yakar A. Neurosurgery—Functional regeneration after laser axotomy. Nature 2004, 432: 822.

    CAS  PubMed  Google Scholar 

  26. Hu BB, Chen M, Huang RC, Huang YB, Xu Y, Yin W, et al. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp Neurol 2018, 300: 67–73.

    CAS  PubMed  Google Scholar 

  27. Huang R, Chen M, Yang L, Wagle M, Guo S, Hu B. MicroRNA-133b Negatively regulates zebrafish single mauthner-cell axon regeneration through targeting tppp3 in vivo. Front Mol Neurosci 2017, 10: 375.

    PubMed  PubMed Central  Google Scholar 

  28. Xu Y, Chen M, Hu B, Huang R, Hu B. In vivo imaging of mitochondrial transport in single-axon regeneration of zebrafish mauthner cells. Front Cell Neurosci 2017, 11: 4.

    PubMed  PubMed Central  Google Scholar 

  29. Chen M, Huang RC, Yang LQ, Ren DL, Hu B. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J 2019, 33: 7721–7733.

    CAS  PubMed  Google Scholar 

  30. Satou C, Kimura Y, Kohashi T, Horikawa K, Takeda H, Oda Y, et al. Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish. J Neurosci 2009, 29: 6780–6793.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic-development of the zebrafish. Dev Dyn 1995, 203: 253–310.

    CAS  PubMed  Google Scholar 

  32. Jao LE, Wente SR, Chen WB. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 2013, 110: 13904–13909.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen M, Xu Y, Huang RC, Huang YB, Ge SC, Hu B. N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo. Mol Neurobiol 2017, 54: 6917–6930.

    CAS  PubMed  Google Scholar 

  34. O’Donnell KC, Vargas ME, Sagasti A. WldS and PGC-1 alpha regulate mitochondrial transport and oxidation state after axonal injury. J Neurosci 2013, 33: 14778–14790.

    PubMed  PubMed Central  Google Scholar 

  35. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 2008, 44: 619–626.

    CAS  PubMed  Google Scholar 

  36. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29: 644–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010, 11: R14.

  38. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36: D480–D484.

    CAS  PubMed  Google Scholar 

  39. Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol 2015, 6: 472–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cartoni R, Norsworthy MW, Bei F, Wang C, Li S, Zhang Y, et al. The mammalian-specific protein armcx1 regulates mitochondrial transport during axon regeneration. Neuron 2016, 92: 1294–1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou B, Yu P, Lin MY, Sun T, Chen Y, Sheng ZH. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 2016, 214: 103–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 2004, 279: 13044–13053.

    CAS  PubMed  Google Scholar 

  43. Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 2011, 14: 819–829.

    CAS  PubMed  Google Scholar 

  44. Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 2004, 279: 22284–22293.

    CAS  PubMed  Google Scholar 

  45. Gutsche M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 2009, 284: 31532–31540.

    Google Scholar 

  46. Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008, 60: 748–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. McWilliams TG, Prescott AR, Allen GFG, Tamjar J, Munson MJ, Thomson C, et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 2016, 214: 333–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sies H. Role of metabolic H2O2 generation. J Biol Chem 2014, 289: 8735–8741.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nie YG, Speakman JR, Wu Q, Zhang CL, Hu YB, Xia MH, et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 2015, 349: 171–174.

    CAS  PubMed  Google Scholar 

  50. Baas PW, Deitch JS, Black MM, Banker GA. Polarity Orientation of microtubules in hippocampal-neurons—uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 1988, 85: 8335–8339.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Treberg JR, Braun K, Selseleh P. Mitochondria can act as energy-sensing regulators of hydrogen peroxide availability. Redox Biol 2019, 20: 483–488.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771183 and 31701027) and the National Key Research and Development Program of China (2019YFA0405603 and 2019YFA0405600). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Long Ren or Bing Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LQ., Chen, M., Ren, DL. et al. Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mitochondrial Dynamics in Zebrafish. Neurosci. Bull. 36, 1500–1512 (2020). https://doi.org/10.1007/s12264-020-00600-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00600-9

Keywords

Navigation