Skip to main content

Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Sun H, Fu S, Cui S, Yin X, Sun X, Qi X, et al. Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain. Sci Adv 2020, 6: eaay6687.

  2. 2.

    Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012, 484: 381–385.

    CAS  Article  Google Scholar 

  3. 3.

    Yap EL, Greenberg ME. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 2018, 100: 330–348.

    CAS  Article  Google Scholar 

  4. 4.

    Guo YC, Yuan T, Guo BY. The secret of fear memory attenuation: facing fears. Neurosci Bull 2019, 35: 775–777.

    Article  Google Scholar 

  5. 5.

    Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, Simmons DE, et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 2009, 12: 1069–1073.

    CAS  Article  Google Scholar 

  6. 6.

    Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley 1949.

    Google Scholar 

  7. 7.

    Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science 2015, 348: 1007–1013.

  8. 8.

    Tonegawa S, Pignatelli M, Roy DS, Ryan TJ. Memory engram storage and retrieval. Curr Opin Neurobiol 2015, 35: 101–109.

    CAS  Article  Google Scholar 

  9. 9.

    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339: 819–823.

    CAS  Article  Google Scholar 

  10. 10.

    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159: 440–455.

    CAS  Article  Google Scholar 

  11. 11.

    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154: 442–451.

    CAS  Article  Google Scholar 

  12. 12.

    Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016, 13: 563–567.

    CAS  Article  Google Scholar 

  13. 13.

    Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 2015, 33: 755–760.

    CAS  Article  Google Scholar 

  14. 14.

    Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 2015, 33: 139–142.

    CAS  Article  Google Scholar 

  15. 15.

    Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 2015, 11: 316–318.

    CAS  Article  Google Scholar 

  16. 16.

    Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017, 20: 1172–1179.

    CAS  Article  Google Scholar 

  17. 17.

    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154: 1380–1389.

    CAS  Article  Google Scholar 

  18. 18.

    Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014, 32: 577–582.

    CAS  Article  Google Scholar 

  19. 19.

    Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 2016, 13: 868–874.

    CAS  Article  Google Scholar 

  20. 20.

    Yang S, Li S, Li XJ. Shortening the half-life of Cas9 maintains its gene editing ability and reduces neuronal toxicity. Cell Rep 2018, 25: 2653–2659.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This insight article was supported by grants from the National Natural Science Foundation of China (81974166, 31872774, 31371119, 91732107, and 81821092), Beijing Natural Science Foundation (7202083, 5182013), the National Basic Research (973) Program of the Ministry of Science and Technology of China (2014CB548200 and 2015CB554503), and the Interdisciplinary Medicine Seed Fund of Peking University (BMU2018MX011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to You Wan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zheng, J., Yi, M. et al. Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9. Neurosci. Bull. 37, 423–426 (2021). https://doi.org/10.1007/s12264-020-00599-z

Download citation