Connexin 36 Mediates Orofacial Pain Hypersensitivity Through GluK2 and TRPA1

Abstract

Trigeminal neuralgia is a debilitating condition, and the pain easily spreads to other parts of the face. Here, we established a mouse model of partial transection of the infraorbital nerve (pT-ION) and found that the Connexin 36 (Cx36) inhibitor mefloquine caused greater alleviation of pT-ION-induced cold allodynia compared to the reduction of mechanical allodynia. Mefloquine reversed the pT-ION-induced upregulation of Cx36, glutamate receptor ionotropic kainate 2 (GluK2), transient receptor potential ankyrin 1 (TRPA1), and phosphorylated extracellular signal regulated kinase (p-ERK) in the trigeminal ganglion. Cold allodynia but not mechanical allodynia induced by pT-ION or by virus-mediated overexpression of Cx36 in the trigeminal ganglion was reversed by the GluK2 antagonist NS102, and knocking down Cx36 expression in Nav1.8-expressing nociceptors by injecting virus into the orofacial skin area of Nav1.8-Cre mice attenuated cold allodynia but not mechanical allodynia. In conclusion, we show that Cx36 contributes greatly to the development of orofacial pain hypersensitivity through GluK2, TRPA1, and p-ERK signaling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Imbe H, Iwata K, Zhou QQ, Zou S, Dubner R, Ren K. Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation. Implications for persistent temporomandibular pain. Cells Tissues Organs 2001, 169: 238–247.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Zakrzewska JM, Wu J, Mon-Williams M, Phillips N, Pavitt SH. Evaluating the impact of trigeminal neuralgia. Pain 2017, 158: 1166–1174.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Sugiyama T, Shinoda M, Watase T, Honda K, Ito R, Kaji K, et al. Nitric oxide signaling contributes to ectopic orofacial neuropathic pain. J Dent Res 2013, 92: 1113–1117.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron 2006, 52: 77–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Kim YS, Chu Y, Han L, Li M, Li Z, LaVinka PC, et al. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 2014, 81: 873–887.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Shinoda M, Iwata K. Neural communication in the trigeminal ganglion contributes to ectopic orofacial pain. J Oral Biosci 2013, 55: 165–168.

    CAS  Article  Google Scholar 

  7. 7.

    Jeon YH, Youn DH. Spinal gap junction channels in neuropathic pain. Korean J Pain 2015, 28: 231–235.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Goldberg GS, Lampe PD, Nicholson BJ. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1999, 1: 457–459.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Devor M, Amir R, Rappaport ZH. Pathophysiology of trigeminal neuralgia: the ignition hypothesis. Clin J Pain 2002, 18: 4–13.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Rappaport ZH, Devor M. Trigeminal neuralgia: the role of self-sustaining discharge in the trigeminal ganglion. Pain 1994, 56: 127–138.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Spray DC, Hanani M. Gap junctions, pannexins and pain. Neurosci Lett 2019, 695: 46–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, et al. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 2012, 60: 1660–1670.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci 2008, 28: 4702–4711.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Vit JP, Jasmin L, Bhargava A, Ohara PT. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol 2006, 2: 247–257.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Pannese E, Ledda M, Cherkas PS, Huang TY, Hanani M. Satellite cell reactions to axon injury of sensory ganglion neurons: increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anat Embryol (Berl) 2003, 206: 337–347.

    CAS  Article  Google Scholar 

  16. 16.

    Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain 2014, 137: 2193–2209.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Ohara PT, Vit JP, Bhargava A, Jasmin L. Evidence for a role of connexin 43 in trigeminal pain using RNA interference in vivo. J Neurophysiol 2008, 100: 3064–3073.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Kaji K, Shinoda M, Honda K, Unno S, Shimizu N, Iwata K. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol Pain 2016, 12.

  19. 19.

    Spray DC, Iglesias R, Shraer N, Suadicani SO, Belzer V, Hanstein R, et al. Gap junction mediated signaling between satellite glia and neurons in trigeminal ganglia. Glia 2019, 67: 791–801.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Niederberger E, Kuhlein H, Geisslinger G. Update on the pathobiology of neuropathic pain. Expert Rev Proteomics 2008, 5: 799–818.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 2001, 21: 1983–2000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 2002, 22: 10898–10905.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 2001, 31: 477–485.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Ouachikh O, Hafidi A, Boucher Y, Dieb W. Electrical synapses are involved in orofacial neuropathic pain. Neuroscience 2018, 382: 69–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Nagy JI, Lynn BD, Senecal JMM, Stecina K. Connexin36 expression in primary afferent neurons in relation to the axon reflex and modality coding of somatic sensation. Neuroscience 2018, 383: 216–234.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Garrett FG, Durham PL. Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation. Neuron Glia Biol 2008, 4: 295–306.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Cui WQ, Chu YX, Xu F, Chen T, Gao L, Feng Y, et al. Calcium channel alpha2delta1 subunit mediates secondary orofacial hyperalgesia through PKC-TRPA1/gap junction signaling. J Pain 2020, 21: 238–257.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Seemann N, Welling A, Rustenbeck I. The inhibitor of connexin Cx36 channels, mefloquine, inhibits voltage-dependent Ca(2+) channels and insulin secretion. Mol Cell Endocrinol 2018, 472: 97–106.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Gong J, Liu J, Ronan EA, He F, Cai W, Fatima M, et al. A cold-sensing receptor encoded by a glutamate receptor gene. Cell 2019, 178: 1375–1386.e1311.

    Google Scholar 

  30. 30.

    Ji RR, Gereau RWT, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev 2009, 60: 135–148.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 2008, 321: 702–705.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Imamura Y, Kawamoto H, Nakanishi O. Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats. Exp Brain Res 1997, 116: 97–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Ringkamp M, Meyer RA. Injured versus uninjured afferents: Who is to blame for neuropathic pain? Anesthesiology 2005, 103: 221–223.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Lim EJ, Jeon HJ, Yang GY, Lee MK, Ju JS, Han SR, et al. Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats. Prog Neuropsychopharmacol Biol Psychiatry 2007, 31: 1322–1329.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Guo QH, Tong QH, Lu N, Cao H, Yang L, Zhang YQ. Proteomic analysis of the hippocampus in mouse models of trigeminal neuralgia and inescapable shock-induced depression. Neurosci Bull 2018, 34: 74–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Scrivani S, Wallin D, Moulton EA, Cole S, Wasan AD, Lockerman L, et al. A fMRI evaluation of lamotrigine for the treatment of trigeminal neuropathic pain: pilot study. Pain Med 2010, 11: 920–941.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Eugenin EA, Basilio D, Saez JC, Orellana JA, Raine CS, Bukauskas F, et al. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 2012, 7: 499–518.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Akbarpour B, Sayyah M, Babapour V, Mahdian R, Beheshti S, Kamyab AR. Expression of connexin 30 and connexin 32 in hippocampus of rat during epileptogenesis in a kindling model of epilepsy. Neurosci Bull 2012, 28: 729–736.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, et al. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 2016, 91: 1085–1096.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Devor M, Wall PD. Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J Neurophysiol 1990, 64: 1733–1746.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Chen ZY, Shen FY, Jiang L, Zhao X, Shen XL, Zhong W, et al. Attenuation of neuropathic pain by inhibiting electrical synapses in the anterior cingulate cortex. Anesthesiology 2016, 124: 169–183.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Tine RC, Faye B, Sylla K, Ndiaye JL, Ndiaye M, Sow D, et al. Efficacy and tolerability of a new formulation of artesunate-mefloquine for the treatment of uncomplicated malaria in adult in Senegal: open randomized trial. Malar J 2012, 11: 416.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Evans AJ, Gurung S, Henley JM, Nakamura Y, Wilkinson KA. Exciting times: New advances towards understanding the regulation and roles of kainate receptors. Neurochem Res 2019, 44: 572–584.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 2006, 50: 277–289.

    CAS  Article  Google Scholar 

  45. 45.

    Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 2005, 115: 2393–2401.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Trevisan G, Benemei S, Materazzi S, De Logu F, De Siena G, Fusi C, et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 2016, 139: 1361–1377.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of pain and itch by TRP channels. Neurosci Bull 2018, 34: 120–142.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Lin MW, Lin CC, Chen YH, Yang HB, Hung SY. Celastrol inhibits dopaminergic neuronal death of Parkinson’s disease through activating mitophagy. Antioxidants (Basel) 2019, 9: 37. https://doi.org/10.3390/antiox9010037.

    CAS  Article  Google Scholar 

  49. 49.

    Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 2004, 24: 8300–8309.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci 2002, 22: 7737–7745.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Impey S, Obrietan K, Storm DR. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999, 23: 11–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Cao H, Ren WH, Zhu MY, Zhao ZQ, Zhang YQ. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: implications for affective pain. Neurosci Bull 2012, 28: 77–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Noma N, Tsuboi Y, Kondo M, Matsumoto M, Sessle BJ, Kitagawa J, et al. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats. J Comp Neurol 2008, 507: 1428–1440.

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Ji RR, Befort K, Brenner GJ, Woolf CJ. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 2002, 22: 478–485.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Shao S, Xia H, Hu M, Chen C, Fu J, Shi G, et al. Isotalatizidine, a C19-diterpenoid alkaloid, attenuates chronic neuropathic pain through stimulating ERK/CREB signaling pathway-mediated microglial dynorphin A expression. J Neuroinflammation 2020, 17: 13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Han C, Huang J, Waxman SG. Sodium channel Nav1.8: emerging links to human disease. Neurology 2016, 86: 473–483.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Chang W, Berta T, Kim YH, Lee S, Lee SY, Ji RR. Expression and role of voltage-gated sodium channels in human dorsal root ganglion neurons with special focus on nav1.7, species differences, and regulation by paclitaxel. Neurosci Bull 2018, 34: 4–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 2012, 109: 19444–19449.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Leo S, D’Hooge R, Meert T. Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav18 and Nav19 knockout mice. Behav Brain Res 2010, 208: 149–157.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Foulkes T, Wood JN. Mechanisms of cold pain. Channels (Austin) 2007, 1: 154–160.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81971056, 31600852, 81771202, and 81873101), the Innovative Research Team of High-level Local Universities in Shanghai, the Foundation of Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20180302153701406), the National Key R&D Program of China (2017YFB0403803), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), and ZJLab.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Xia Chu.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1009 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Ma, TL., Qiu, YQ. et al. Connexin 36 Mediates Orofacial Pain Hypersensitivity Through GluK2 and TRPA1. Neurosci. Bull. (2020). https://doi.org/10.1007/s12264-020-00594-4

Download citation

Keywords

  • Orofacial pain
  • Gap junction
  • Glutamate receptor ionotropic kainate 2
  • Transient receptor potential A1