Purinergic Modulation of Activity in the Developing Auditory Pathway

Abstract

Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Burnstock G. Purinergic nerves. Pharmacol Rev 1972, 24: 509–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Burnstock G. Introduction to purinergic signalling in the brain. Adv Exp Med Biol 2020, 1202: 1–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends in Neurosciences 2009, 32: 19–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Bowser DN, Khakh BS. Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 2007, 129: 485–491.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Ho T, Jobling AI, Greferath U, Chuang T, Ramesh A, Fletcher EL, Vessey KA. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Front Cell Neurosci 2015, 9: 389.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Jo YH, Role LW. Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 2002, 22: 4794–4804.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Lalo U, Palygin O, Verkhratsky A, Grant SGN, Pankratov Y. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 2016, 6: 33609.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Richardson PJ, Brown SJ. ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem 1987, 48: 622–630.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Sheikhbahaei S, Turovsky EA, Hosford PS, Hadjihambi A, Theparambil SM, Liu B, et al. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat Commun 2018, 9: 370.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Sperlágh B, Sershen H, Lajtha A, Vizi ES. Co-release of endogenous ATP and [3H]noradrenaline from rat hypothalamic slices: origin and modulation by α2-adrenoceptors. Neuroscience 1997, 82: 511–520.

    Article  Google Scholar 

  11. 11.

    Toth AB, Hori K, Novakovic MM, Bernstein NG, Lambot L, Prakriya M. CRAC channels regulate astrocyte Ca2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci Signal 2019, 12: eaaw5450. doi:10.1126/scisignal.aaw5450.

  12. 12.

    Zhao H-B, Yu N, Fleming CR. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 2005, 102: 18724–18729.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Yi C, Mei X, Ezan P, Mato S, Matias I, Giaume C, Koulakoff A. Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer’s disease. Cell Death Differ 2016, 23: 1691–1701.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M. Connexin 43 hemichannels are permeable to ATP. J Neurosci 2008, 28: 4702–4711.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Chen J, Zhu Y, Liang C, Chen J, Zhao H-B. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep 2015, 5: 10762.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Locovei S, Bao L, Dahl G. Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 2006, 103: 7655–7659.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, Coffey EE, et al. Mechanosensitive release of adenosine 5’-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 2014, 62: 1486–1501.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ma Z, Taruno A, Ohmoto M, Jyotaki M, Lim JC, Miyazaki H, et al. CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Neuron 2018, 98: 547–561.e10.

    Google Scholar 

  19. 19.

    Ma J, Qi X, Yang C, Pan R, Wang S, Wu J, et al. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 2018, 23: 883–891.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013, 495: 223–226.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Gaitán-Peñas H, Gradogna A, Laparra-Cuervo L, Solsona C, Fernández-Dueñas V, Barrallo-Gimeno A, et al. Investigation of LRRC8-mediated volume-regulated anion currents in xenopus oocytes. Biophys J 2016, 111: 1429–1443.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Dunn PJ, Salm EJ, Tomita S. ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity. J Biol Chem 2020. doi:10.1074/jbc.RA119.010699.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhao B, Gu L, Liu K, Zhang M, Liu H. Maxi-anion channels play a key role in glutamate-induced ATP release from mouse astrocytes in primary culture. Neuroreport 2017, 28: 380–385.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Xiong Y, Teng S, Zheng L, Sun S, Li J, Guo N, et al. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes. J Physiol (Lond) 2018, 596: 1931–1947.

    CAS  Article  Google Scholar 

  25. 25.

    Burnstock G. Purinergic receptors. J Theor Biol 1976, 62: 491–503.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Burnstock G. A basis for distinguishing two types of purinergic receptors. In: Straub RW, Bolis L, editors. Cell membrane receptors for drugs and hormones: a multidisciplinary approach. New York: Raven Press, 1978: 107–118.

    Google Scholar 

  27. 27.

    Burnstock G. Purine and purinergic receptors. Brain Neurosci Adv 2018, 2: 2398212818817494.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    North RA. Molecular physiology of P2X receptors. Physiol Rev 2002, 82: 1013–1067.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011, 63: 641–683.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Samways DSK, Li Z, Egan TM. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 2014, 8: 6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Kügelgen I von. Pharmacology of P2Y receptors. Brain Res Bull 2019, 151: 12–24.

    Article  CAS  Google Scholar 

  32. 32.

    Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev 2018, 98: 1591–1625.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Rotermund N, Schulz K, Hirnet D, Lohr C. Purinergic signaling in the vertebrate olfactory system. Front Cell Neurosci 2019, 13: 112.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Kinnamon SC, Finger TE. A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci 2013, 7: 264.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Housley GD, Bringmann A, Reichenbach A. Purinergic signaling in special senses. Trends Neurosci 2009, 32: 128–141.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Milenkovic I, Rinke I, Witte M, Dietz B, Rübsamen R. P2 receptor-mediated signaling in spherical bushy cells of the mammalian cochlear nucleus. J Neurophysiol 2009, 102: 1821–1833.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Yao ST, Barden JA, Finkelstein DI, Bennett MR, Lawrence AJ. Comparative study on the distribution patterns of P2X(1)-P2X(6) receptor immunoreactivity in the brainstem of the rat and the common marmoset (Callithrix jacchus): association with catecholamine cell groups. J Comp Neurol 2000, 427: 485–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Koehl A, Schmidt N, Rieger A, Pilgram SM, Letunic I, Bork P, et al. Gene expression profiling of the rat superior olivary complex using serial analysis of gene expression. Eur J Neurosci 2004, 20: 3244–3258.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A 2008, 105: 18770–18775.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Eckrich T, Blum K, Milenkovic I, Engel J. Fast Ca2+ transients of inner hair cells arise coupled and uncoupled to Ca2+ waves of inner supporting cells in the developing mouse cochlea. Front Mol Neurosci 2018, 11: 264.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE. The origin of spontaneous activity in the developing auditory system. Nature 2007, 450: 50–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Tritsch NX, Bergles DE. Developmental regulation of spontaneous activity in the Mammalian cochlea. J Neurosci 2010, 30: 1539–1550.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Johnson SL, Eckrich T, Kuhn S, Zampini V, Franz C, Ranatunga KM, et al. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 2011, 14: 711–717.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Ceriani F, Hendry A, Jeng J-Y, Johnson SL, Stephani F, Olt J, et al. Coordinated calcium signalling in cochlear sensory and non-sensory cells refines afferent innervation of outer hair cells. EMBO J 2019, 38: e99839. doi:10.15252/embj.201899839.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Weisz C, Glowatzki E, Fuchs P. The postsynaptic function of type II cochlear afferents. Nature 2009, 461: 1126–1129.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Dietz B, Jovanovic S, Wielsch B, Nerlich J, Rubsamen R, Milenkovic I. Purinergic modulation of neuronal activity in developing auditory brainstem. J Neurosci 2012, 32: 10699–10712.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kreinest M, Müller B, Winkelhoff J, Friauf E, Löhrke S. Miniature EPSCs in the lateral superior olive before hearing onset: regional and cell-type-specific differences and heterogeneous neuromodulatory effects of ATP. Brain Res 2009, 1295: 21–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Watano T, Calvert JA, Vial C, Forsythe ID, Evans RJ. P2X receptor subtype-specific modulation of excitatory and inhibitory synaptic inputs in the rat brainstem. J Physiol (Lond) 2004, 558: 745–757.

    CAS  Article  Google Scholar 

  49. 49.

    Bekesy G von. Experiments in Hearing. New York: McGraw-Hill Book Company, 1960.

    Google Scholar 

  50. 50.

    Tsukano H, Horie M, Ohga S, Takahashi K, Kubota Y, Hishida R, et al. Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Front Neural Circuits 2017, 11: 14.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Harding-Forrester S, Feldman DE. Somatosensory maps. Handb Clin Neurol 2018, 151: 73–102.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Kremkow J, Jin J, Wang Y, Alonso JM. Principles underlying sensory map topography in primary visual cortex. Nature 2016, 533: 52–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Weigand M, Sartori F, Cuntz H. Universal transition from unstructured to structured neural maps. Proc Natl Acad Sci U S A 2017, 114: E4057–E4064.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Karmakar K, Narita Y, Fadok J, Ducret S, Loche A, Kitazawa T, et al. Hox2 genes are required for tonotopic map precision and sound discrimination in the mouse auditory brainstem. Cell Rep 2017, 18: 185–197.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Friauf E, Lohmann C. Development of auditory brainstem circuitry. Activity-dependent and activity-independent processes. Cell Tissue Res 1999, 297: 187–195.

  56. 56.

    Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, et al. Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. J Neurosci 2019, 39: 984–1004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Kim G, Kandler K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat Neurosci 2003, 6: 282–290.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Clause A, Kim G, Sonntag M, Weisz CJC, Vetter DE, Rűbsamen R, Kandler K. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 2014, 82: 822–835.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, et al. Homeostatic control of spontaneous activity in the developing auditory system. Neuron 2018, 99: 511–524.e5.

    Google Scholar 

  60. 60.

    Rübsamen R, Schäfer M. Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A 1990, 167: 757–769.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Sonntag M, Englitz B, Kopp-Scheinpflug C, Rübsamen R. Early postnatal development of spontaneous and acoustically evoked discharge activity of principal cells of the medial nucleus of the trapezoid body: an in vivo study in mice. J Neurosci 2009, 29: 9510–9520.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Tritsch NX, Rodriguez-Contreras A, Crins TTH, Wang HC, Borst JGG, Bergles DE. Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat Neurosci 2010, 13: 1050–1052.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Hudspeth AJ. Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci 2014, 15: 600–614.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Ekdale EG. Form and function of the mammalian inner ear. J Anat 2016, 228: 324–337.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Lim DJ, Anniko M. Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta Otolaryngol Suppl 1985, 422: 1–69.

  66. 66.

    Johnson SL, Franz C, Knipper M, Marcotti W. Functional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses. J Physiol (Lond) 2009, 587: 1715–1726.

    CAS  Article  Google Scholar 

  67. 67.

    Alford BR, Ruben RJ. Physiological, behavioral and anatomical correlates of the development of hearing in the mouse. Ann Otol Rhinol Laryngol 1963, 72: 237–247.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Müller MK, Jovanovic S, Keine C, Radulovic T, Rübsamen R, Milenkovic I. Functional development of principal neurons in the anteroventral cochlear nucleus extends beyond hearing onset. Front Cell Neurosci 2019, 13: 119.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Song L, McGee J, Walsh EJ. Frequency- and level-dependent changes in auditory brainstem responses (ABRS) in developing mice. J Acoust Soc Am 2006, 119: 2242–2257.

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    McFadden SL, Walsh EJ, McGee J. Onset and development of auditory brainstem responses in the Mongolian gerbil (Meriones unguiculatus). Hear Res 1996, 100: 68–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Woolf NK, Ryan AF. The development of auditory function in the cochlea of the mongolian gerbil. Hear Res 1984, 13: 277–283.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Blatchley BJ, Cooper WA, Coleman JR. Development of auditory brainstem response to tone pip stimuli in the rat. Brain Res 1987, 429: 75–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Kelley MW. Cellular commitment and differentiation in the organ of Corti. Int J Dev Biol 2007, 51: 571–583.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Mammano F, Bortolozzi M. Ca2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium 2018, 70: 117–126.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Jeng J-Y, Ceriani F, Hendry A, Johnson SL, Yen P, Simmons DD, et al. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea. J Physiol (Lond) 2020, 598: 151–170.

    CAS  Article  Google Scholar 

  76. 76.

    Huang L-C, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 2007, 134: 2925–2933.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Echteler SM. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci U S A 1992, 89: 6324–6327.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 2010, 11: 18–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Clause A, Lauer AM, Kandler K. Mice lacking the alpha9 subunit of the nicotinic acetylcholine receptor exhibit deficits in frequency difference limens and sound localization. Front Cell Neurosci 2017, 11: 167.

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Corns LF, Johnson SL, Roberts T, Ranatunga KM, Hendry A, Ceriani F, et al. Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nat Commun 2018, 9: 4015.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Dayaratne MWN, Vlajkovic SM, Lipski J, Thorne PR. Kölliker’s organ and the development of spontaneous activity in the auditory system: implications for hearing dysfunction. Biomed Res Int 2014, 2014: 367939.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Kandler K, Clause A, Noh J. Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 2009, 12: 711–717.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Johnson SL, Kuhn S, Franz C, Ingham N, Furness DN, Knipper M, et al. Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proc Natl Acad Sci U S A 2013, 110: 8720–8725.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Johnson SL, Ceriani F, Houston O, Polishchuk R, Polishchuk E, Crispino G, et al. Connexin-mediated signaling in nonsensory cells is crucial for the development of sensory inner hair cells in the mouse cochlea. J Neurosci 2017, 37: 258–268.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Yu WM, Goodrich LV. Morphological and physiological development of auditory synapses. Hear Res 2014, 311: 3–16.

    PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Kros CJ, Ruppersberg JP, Rüsch A. Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 1998, 394: 281–284.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Marcotti W, Johnson SL, Holley MC, Kros CJ. Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol (Lond) 2003, 548: 383–400.

    CAS  Article  Google Scholar 

  88. 88.

    Wong AB, Jing Z, Rutherford MA, Frank T, Strenzke N, Moser T. Concurrent maturation of inner hair cell synaptic Ca2+ influx and auditory nerve spontaneous activity around hearing onset in mice. J Neurosci 2013, 33: 10661–10666.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Kros CJ. How to build an inner hair cell: challenges for regeneration. Hear Res 2007, 227: 3–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Marcotti W. Functional assembly of mammalian cochlear hair cells. Exp Physiol 2012, 97: 438–451.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Hinojosa R. A note on development of Corti’s organ. Acta Otolaryngol 1977, 84: 238–251.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Majumder P, Crispino G, Rodriguez L, Ciubotaru CD, Anselmi F, Piazza V, et al. ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels. Purinergic Signal 2010, 6: 167–187.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Leybaert L, Sanderson MJ. Intercellular Ca(2+) waves: mechanisms and function. Physiol Rev 2012, 92: 1359–1392.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Mazzarda F, D’Elia A, Massari R, Ninno A de, Bertani FR, Businaro L, et al. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. Lab Chip 2020. doi:10.1039/d0lc00427h.

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Schütz M, Scimemi P, Majumder P, Siati RD de, Crispino G, Rodriguez L, et al. The human deafness-associated connexin 30 T5M mutation causes mild hearing loss and reduces biochemical coupling among cochlear non-sensory cells in knock-in mice. Hum Mol Genet 2010, 19: 4759–4773.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Babola TA, Kersbergen CJ, Wang HC, Bergles DE. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space. Elife 2020. doi:10.7554/eLife.52160.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Piazza V, Ciubotaru CD, Gale JE, Mammano F. Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium 2007, 41: 77–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Gossman DG, Zhao HB. Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signaling. Cell Commun Adhes 2008, 15: 305-315.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Liu WJ, Yang J. Developmental expression of inositol 1, 4, 5-trisphosphate receptor in the post-natal rat cochlea. Eur J Histochem 2015, 59: 2486.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Ahmad S, Chen S, Sun J, Lin X. Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 2003, 307: 362–368.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Wang HC, Lin C-C, Cheung R, Zhang-Hooks Y, Agarwal A, Ellis-Davies G, et al. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells. Cell 2015, 163: 1348–1359.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Harrus A-G, Ceccato J-C, Sendin G, Bourien J, Puel J-L, Nouvian R. Spiking pattern of the mouse developing inner hair cells is mostly invariant along the tonotopic axis. Front Cell Neurosci 2018, 12: 407.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Sendin G, Bourien J, Rassendren F, Puel J-L, Nouvian R. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea. Proc Natl Acad Sci U S A 2014, 111: 1999–2004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Johnson SL, Wedemeyer C, Vetter DE, Adachi R, Holley MC, Elgoyhen AB, Marcotti W. Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses. Open Biol 2013, 3: 130163.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Brändle U, Zenner H-P, Ruppersberg JP. Gene expression of P2X-receptors in the developing inner ear of the rat. Neurosci Lett 1999, 273: 105–108.

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Järlebark L, et al. Expression of the P2X 2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 1999, 19: 8377–8388.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Huang L-C, Ryan AF, Cockayne DA, Housley GD. Developmentally regulated expression of the P2X3 receptor in the mouse cochlea. Histochem Cell Biol 2006, 125: 681–692.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Nikolic P, Housley GD, Thorne PR. Expression of the P2X7 receptor subunit of the adenosine 5’-triphosphate-gated ion channel in the developing and adult rat cochlea. Audiol Neurootol 2003, 8: 28–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Marcotti W, Johnson SL, Kros CJ. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol (Lond) 2004, 560: 691–708.

    CAS  Article  Google Scholar 

  110. 110.

    Moglie MJ, Fuchs PA, Elgoyhen AB, Goutman JD. Compartmentalization of antagonistic Ca2+ signals in developing cochlear hair cells. Proc Natl Acad Sci U S A 2018, 115: E2095–E2104.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Glowatzki E, Fuchs PA. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 2000, 288: 2366–2368.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Zachary S, Nowak N, Vyas P, Bonanni L, Fuchs PA. Voltage-gated calcium influx modifies cholinergic inhibition of inner hair cells in the immature rat cochlea. J Neurosci 2018, 38: 5677–5687.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Rodriguez L, Simeonato E, Scimemi P, Anselmi F, Calì B, Crispino G, et al. Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition. Proc Natl Acad Sci U S A 2012, 109: 14013–14018.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    He DZZ, Lovas S, Ai Y, Li Y, Beisel KW. Prestin at year 14: progress and prospect. Hear Res 2014, 311: 25–35.

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Dallos P. Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 2008, 18: 370–376.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiol Rev 2001, 81: 1305–1352.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Yu N, Zhao H-B. ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance. Pflugers Arch 2008, 457: 453–461.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Smith DW, Keil A. The biological role of the medial olivocochlear efferents in hearing: separating evolved function from exaptation. Front Syst Neurosci 2015, 9: 12.

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 2017, 65: 80–87.

    PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Froud KE, Wong ACY, Cederholm JME, Klugmann M, Sandow SL, Julien J-P, et al. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat Commun 2015, 6: 7115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Flores EN, Duggan A, Madathany T, Hogan AK, Márquez FG, Kumar G, et al. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr Biol 2015, 25: 606–612.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Liu C, Glowatzki E, Fuchs PA. Unmyelinated type II afferent neurons report cochlear damage. Proc Natl Acad Sci U S A 2015, 112: 14723–14727.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Weisz CJC, Lehar M, Hiel H, Glowatzki E, Fuchs PA. Synaptic transfer from outer hair cells to type II afferent fibers in the rat cochlea. J Neurosci 2012, 32: 9528–9536.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Weisz CJC, Glowatzki E, Fuchs PA. Excitability of type II cochlear afferents. J Neurosci 2014, 34: 2365–2373.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Huang L-C, Thorne PR, Vlajkovic SM, Housley GD. Differential expression of P2Y receptors in the rat cochlea during development. Purinergic Signal 2010, 6: 231–248.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Beurg M, Safieddine S, Roux I, Bouleau Y, Petit C, Dulon D. Calcium- and otoferlin-dependent exocytosis by immature outer hair cells. J Neurosci 2008, 28: 1798–1803.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Berekméri E, Fekete Á, Köles L, Zelles T. Postnatal development of the subcellular structures and purinergic signaling of deiters’ cells along the tonotopic axis of the cochlea. Cells 2019. doi:10.3390/cells8101266.

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Liberman MC. Single-neuron labeling in the cat auditory nerve. Science 1982, 216: 1239–1241.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Brown MC, Berglund AM, Kiang NY, Ryugo DK. Central trajectories of type II spiral ganglion neurons. J Comp Neurol 1988, 278: 581–590.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Berglund AM, Ryugo DK. Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 1987, 255: 560–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Meyer AC, Moser T. Structure and function of cochlear afferent innervation. Curr Opin Otolaryngol Head Neck Surg 2010, 18: 441–6.

    PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Jagger DJ, Housley GD. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J Physiol (Lond) 2003, 552: 525–33.

    CAS  Article  Google Scholar 

  133. 133.

    Nikolic P, Housley GD, Luo L, Ryan AF, Thorne PR. Transient expression of P2X1 receptor subunits of ATP-gated ion channels in the developing rat cochlea. Brain Res Dev Brain Res 2001, 126: 173–182.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Huang L-C, Greenwood D, Thorne PR, Housley GD. Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J Comp Neurol 2005, 484: 133–143.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Housley GD, Luo L, Ryan AF. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5’-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J Comp Neurol 1998, 393: 403–414.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Greenwood D, Jagger DJ, Huang L-C, Hoya N, Thorne PR, Wildman SS, et al. P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development 2007, 134: 1407–1417.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Glowatzki E, Fuchs PA. Transmitter release at the hair cell ribbon synapse. Nat Neurosci 2002, 5: 147–154.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Kim KX, Payne S, Yang-Hood A, Li S-Z, Davis B, Carlquist J, et al. Vesicular glutamatergic transmission in noise-induced loss and repair of cochlear ribbon synapses. J Neurosci 2019, 39: 4434–4447.

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Cho H, Harada N, Yamashita T. Extracellular ATP-induced Ca2+ mobilization of type I spiral ganglion cells from the guinea pig cochlea. Acta Otolaryngol 1997, 117: 545–552.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Ito K, Dulon D. Nonselective cation conductance activated by muscarinic and purinergic receptors in rat spiral ganglion neurons. Am J Physiol, Cell Physiol 2002, 282: C1121–C1135.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Ito K, Dulon D. Purinergic signaling in cochleovestibular hair cells and afferent neurons. Purinergic Signal 2010, 6: 201–209.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Osen KK. Course and termination of the primary afferents in the cochlear nuclei of the cat. An experimental anatomical study. Arch Ital Biol 1970, 108: 21–51.

  143. 143.

    Cant NB, Benson CG. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 2003, 60: 457–474.

    PubMed  Article  Google Scholar 

  144. 144.

    Sando I. The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol 1965, 59: 417–436.

    Article  Google Scholar 

  145. 145.

    Middlebrooks JC. Sound localization. Handb Clin Neurol 2015, 129: 99–116.

    PubMed  Article  Google Scholar 

  146. 146.

    Cao X-J, Oertel D. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity. J Neurophysiol 2010, 104: 2308–2320.

    PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Spirou GA, Brownell WE, Zidanic M. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 1990, 63: 1169–1190.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Joris PX, Carney LH, Smith PH, Yin TC. Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 1994, 71: 1022–1036.

  149. 149.

    Dehmel S, Kopp-Scheinpflug C, Weick M, Dorrscheidt GJ, Rubsamen R. Transmission of phase-coupling accuracy from the auditory nerve to spherical bushy cells in the Mongolian gerbil. Hear Res 2010, 268: 234–249.

    PubMed  Article  Google Scholar 

  150. 150.

    Englitz B, Tolnai S, Typlt M, Jost J, Rubsamen R. Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS One 2009, 4: e7014.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Goyer D, Kurth S, Gillet C, Keine C, Rubsamen R, Kuenzel T. Slow cholinergic modulation of spike probability in ultra-fast time-coding sensory neurons. eNeuro 2016. doi:10.1523/ENEURO.0186-16.2016.

  152. 152.

    Keine C, Rubsamen R. Inhibition shapes acoustic responsiveness in spherical bushy cells. J Neurosci 2015, 35: 8579–8592.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Keine C, Rubsamen R, Englitz B. Inhibition in the auditory brainstem enhances signal representation and regulates gain in complex acoustic environments. Elife 2016. doi:10.7554/eLife.19295.

    Article  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Keine C, Rübsamen R, Englitz B. Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range. Elife 2017. doi:10.7554/eLife.29639.

    Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Kuenzel T, Borst JGG, van der Heijden M. Factors controlling the input-output relationship of spherical bushy cells in the gerbil cochlear nucleus. J Neurosci 2011, 31: 4260–4273.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Kuenzel T, Nerlich J, Wagner H, Rubsamen R, Milenkovic I. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil. Front Neural Circuits 2015, 9: 14.

    PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Nerlich J, Keine C, Rubsamen R, Burger RM, Milenkovic I. Activity-dependent modulation of inhibitory synaptic kinetics in the cochlear nucleus. Front Neural Circuits 2014, 8: 145.

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Nerlich J, Kuenzel T, Keine C, Korenic A, Rubsamen R, Milenkovic I. Dynamic fidelity control to the central auditory system: synergistic glycine/GABAergic inhibition in the cochlear nucleus. J Neurosci 2014, 34: 11604–11620.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Jovanovic S, Radulovic T, Coddou C, Dietz B, Nerlich J, Stojilkovic SS, et al. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. J Physiol (Lond) 2017, 595: 1315–1337.

    CAS  Article  Google Scholar 

  160. 160.

    Xiang Z, Bo X, Burnstock G. P2X receptor immunoreactivity in the rat cochlea, vestibular ganglion and cochlear nucleus. Hear Res 1999, 128: 190–196.

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, et al. Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 1999, 407: 11–32.

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    McCobb DP, Beam KG. Action potential waveform voltage-clamp commands reveal striking differences in calcium entry via low and high voltage activated calcium channels. Neuron 1991, 7: 119–27.

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Zucker RS. Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 1999, 9: 305–313.

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Yang SN, Tang YG, Zucker RS. Selective induction of LTP and LTD by postsynaptic Ca 2+i elevation. J Neurophysiol 1999, 81: 781–787.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. 165.

    Mahajan G, Nadkarni S. Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines. J Physiol (Lond) 2019, 597: 3473–502.

    CAS  Article  Google Scholar 

  166. 166.

    Bellingham MC, Lim R, Walmsley B. Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol 1998, 511 (Pt 3): 861–869.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Brenowitz S, Trussell LO. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J Neurosci 2001, 21: 9487–9498.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Chanda S, Xu-Friedman MA. A low-affinity antagonist reveals saturation and desensitization in mature synapses in the auditory brain stem. J Neurophysiol 2010, 103: 1915–1926.

    PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Illes P, Burnstock G, Tang Y. Astroglia-derived ATP modulates CNS neuronal circuits. Trends Neurosci 2019, 42: 885–898.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. 170.

    Gordon GRJ, Baimoukhametova DV, Hewitt SA, Rajapaksha WRAKJS, Fisher TE, Bains JS. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature neuroscience 2005, 8: 1078–1086.

  171. 171.

    Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 2009, 64: 391–403.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, et al. Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 2006, 26: 9006–9009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 2014, 12: e1001747.

    PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Morest DK. The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 1968, 9: 288–311.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Morest DK. The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwicklungsgesch 1968, 127: 201–220.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Smith PH, Joris PX, Yin TC. Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 1998, 79: 3127–3142.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Hamann M, Billups B, Forsythe ID. Non-calyceal excitatory inputs mediate low fidelity synaptic transmission in rat auditory brainstem slices. Eur J Neurosci 2003, 18: 2899–2902.

    PubMed  Article  PubMed Central  Google Scholar 

  178. 178.

    Kuwabara N, DiCaprio RA, Zook JM. Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 1991, 314: 684–706.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  179. 179.

    Albrecht O, Dondzillo A, Mayer F, Thompson JA, Klug A. Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse. Front Neural Circuits 2014, 8: 83.

    PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Mc Laughlin M, van der Heijden M, Joris PX. How secure is in vivo synaptic transmission at the calyx of Held? J Neurosci 2008, 28: 10206–10219.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Kopp-Scheinpflug C, Dehmel S, Tolnai S, Dietz B, Milenkovic I, Rübsamen R. Glycine-mediated changes of onset reliability at a mammalian central synapse. Neuroscience 2008, 157: 432–445.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Lorteije JAM, Rusu SI, Kushmerick C, Borst JGG. Reliability and precision of the mouse calyx of Held synapse. J Neurosci 2009, 29: 13770–13784.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Kimura M, Saitoh N, Takahashi T. Adenosine A(1) receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. J Physiol (Lond) 2003, 553: 415–426.

    CAS  Article  Google Scholar 

  184. 184.

    Wong AYC, Billups B, Johnston J, Evans RJ, Forsythe ID. Endogenous activation of adenosine A1 receptors, but not P2X receptors, during high-frequency synaptic transmission at the calyx of Held. J Neurophysiol 2006, 95: 3336–3342.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    Grothe B, Pecka M, McAlpine D. Mechanisms of sound localization in mammals. Physiol Rev 2010, 90: 983–1012.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Cant NB, Casseday JH. Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 1986, 247: 457–476.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Spangler KM, Warr WB, Henkel CK. The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 1985, 238: 249–262.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Warr WB. Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 1966, 14: 453–474.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  189. 189.

    Gu JG, MacDermott AB. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 1997, 389: 749–753.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  190. 190.

    Jin Y-H, Bailey TW, Li B-Y, Schild JH, Andresen MC. Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 2004, 24: 4709–4717.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA. Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 2005, 25: 6286–6295.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  192. 192.

    Price GD, Robertson SJ, Edwards FA. Long-term potentiation of glutamatergic synaptic transmission induced by activation of presynaptic P2Y receptors in the rat medial habenula nucleus. Eur J Neurosci 2003, 17: 844–850.

    PubMed  Article  PubMed Central  Google Scholar 

  193. 193.

    Thompson AM, Schofield BR. Afferent projections of the superior olivary complex. Microsc Res Tech 2000, 51: 330–354.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. 194.

    Hubel DH, Wiesel TN. Integrative action in the cat’s lateral geniculate body. J Physiol (Lond) 1961, 155: 385–398.

    CAS  Article  Google Scholar 

  195. 195.

    Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 1970, 206: 419–436.

    CAS  PubMed Central  Article  Google Scholar 

  196. 196.

    Wiesel TN, Hubel DH. Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J Neurophysiol 1963, 26: 978–993.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  197. 197.

    Mudd DB, Balmer TS, Kim SY, Machhour N, Pallas SL. TrkB activation during a critical period mimics the protective effects of early visual experience on perception and the stability of receptive fields in adult superior colliculus. J Neurosci 2019, 39: 4475–4488.

    PubMed  PubMed Central  Article  Google Scholar 

  198. 198.

    Shatz CJ. Emergence of order in visual system development. Proc Natl Acad Sci U S A 1996, 93: 602–608.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. 199.

    Lee CC, Sherman SM. Drivers and modulators in the central auditory pathways. Front Neurosci 2010, 4: 79.

    PubMed  PubMed Central  Article  Google Scholar 

  200. 200.

    Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res Rev 2010, 64: 160–176.

    PubMed  Article  PubMed Central  Google Scholar 

  201. 201.

    Zhang-Hooks Y, Agarwal A, Mishina M, Bergles DE. NMDA receptors enhance spontaneous activity and promote neuronal survival in the developing cochlea. Neuron 2016, 89: 337–350.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. 202.

    Baker CA, Montey KL, Pongstaporn T, Ryugo DK. Postnatal development of the endbulb of held in congenitally deaf cats. Front Neuroanat 2010, 4: 19.

    PubMed  PubMed Central  Google Scholar 

  203. 203.

    Leao RN, Sun H, Svahn K, Berntson A, Youssoufian M, Paolini AG, et al. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J Physiol (Lond) 2006, 571: 563–578.

    CAS  Article  Google Scholar 

  204. 204.

    Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity. Neuroscience 2009, 158: 137–148.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  205. 205.

    Egan TM, Samways DSK, Li Z. Biophysics of P2X receptors. Pflugers Arch 2006, 452: 501–512.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  206. 206.

    Mateos-Aparicio P, Rodríguez-Moreno A. Calcium dynamics and synaptic plasticity. Adv Exp Med Biol 2020, 1131: 965–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  207. 207.

    Jędrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. Eur J Neurosci 2017, 45: 1044–1056.

    PubMed  Article  PubMed Central  Google Scholar 

  208. 208.

    Malenka RC, Nicoll RA. Long-term potentiation–a decade of progress? Science 1999, 285: 1870–1874.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

IM and SJ were supported by the Deutsche Forschungsgemeinschaft (DFG Grant 954/3-1) as a part of the priority program 1608 “Ultrafast and temporally precise information processing: normal and dysfunctional hearing.” We thank Rudolf Rübsamen for critical comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivan Milenkovic.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jovanovic, S., Milenkovic, I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci. Bull. (2020). https://doi.org/10.1007/s12264-020-00586-4

Download citation

Keywords

  • Purinergic signaling
  • Auditory system
  • Development
  • Cochlea
  • Spiral ganglion
  • Auditory brainstem