Skip to main content
Log in

Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington’s and Parkinson’s Disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Huntington’s (HD) and Parkinson’s diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. MacDonald Gillian P.Buckler, Alan J.Altherr, MichaelTagle, DaniloSnell, Russell et al. MEB. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993, 72:971–983.

  2. Rikani AA, Choudhry Z, Choudhry AM, Rizvi N, Ikram H, Mobassarah NJ, et al. The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann Neurosci 2014, 21:112–114.

    PubMed  PubMed Central  Google Scholar 

  3. Yang W, Xie J, Qiang Q, Li L, Lin X, Ren Y, et al. Gedunin degrades aggregates of mutant huntingtin protein and intranuclear inclusions via the proteasomal pathway in neurons and fibroblasts from patients with Huntington’s disease. Neurosci Bull 2019, 35:1024–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lees AJ, Hardy J, Revesz T, Lila R. Parkinson ’ s disease. Lancet 2009, 373:2055–2066.

    CAS  PubMed  Google Scholar 

  5. Jellinger KA. Significance of brain lesions in Parkinson disease dementia and Lewy body dementia. Front Neurol Neurosci 2009, 24:114–125.

    PubMed  Google Scholar 

  6. Mor DE, Ischiropoulos H. The convergence of dopamine and alpha-synuclein: implications for Parkinson’s disease. J Exp Neurosci 2018, 12:1179069518761360.

    PubMed  PubMed Central  Google Scholar 

  7. Fleming SM. Mechanisms of gene-environment interactions in Parkinson’s disease. Curr Env Heal Rep 2017, 4:192–199.

    CAS  Google Scholar 

  8. Kumar KR, Djarmati-Westenberger A, Grunewald A. Genetics of Parkinson’s disease. Semin Neurol 2011, 31:433–440.

    PubMed  Google Scholar 

  9. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol 2013, 9:445–454.

    CAS  PubMed  Google Scholar 

  10. Quarrell OW, Nance MA, Nopoulos P, Paulsen JS, Smith JA, Squitieri F. Managing juvenile Huntington’s disease. Neurodegener Dis Manag 2014, 3.

  11. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007, 64:20–24.

    PubMed  Google Scholar 

  12. DeLong MR. [Functional and pathophysiological models of the basal ganglia: therapeutic implications]. Rinsho Shinkeigaku 2000, 40:1184.

    CAS  PubMed  Google Scholar 

  13. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001, 28:350–354.

    CAS  PubMed  Google Scholar 

  14. Nambu A. Seven problems on the basal ganglia. Curr Opin Neurobiol 2008, 18:595–604.

    CAS  PubMed  Google Scholar 

  15. Berridge MJ. Neuronal calcium signaling. Neuron 1998, 21:13–26.

    CAS  PubMed  Google Scholar 

  16. Capiod T. Extracellular calcium has multiple targets to control cell proliferation. Adv Exp Med Biol 2016, 898:133–156.

    CAS  PubMed  Google Scholar 

  17. Clapham DE. Calcium signaling. Cell, 2007, 131:1047–1058.

    CAS  PubMed  Google Scholar 

  18. La Rovere RM, Roest G, Bultynck G, Parys JB. Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016, 60:74–87.

    PubMed  Google Scholar 

  19. Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by calcium signaling. Cell Calcium 2016, 59:124–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraft R. STIM and ORAI proteins in the nervous system. Channels (Austin) 2015, 9:245–252.

    Google Scholar 

  21. Parekh AB, Putney Jr. JW. Store-operated calcium channels. Physiol Rev 2005, 85:757–810.

    CAS  PubMed  Google Scholar 

  22. Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012, 13:549–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 2007, 9:636–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 2001, 357:673–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2007, 131:1327–1339.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci 2014, 71:2787–2814.

    CAS  PubMed  Google Scholar 

  27. Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease - A therapeutic opportunity? Biochem Biophys Res Commun 2017, 483:998–1004.

    CAS  PubMed  Google Scholar 

  28. Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018, 70: 87–94.

    CAS  PubMed  Google Scholar 

  29. Glaser T, Arnaud Sampaio VF, Lameu C, Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin Cell Dev Biol 2019, 95: 25–33.

    CAS  PubMed  Google Scholar 

  30. Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, et al. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 1999, 72:1890–1898.

    CAS  PubMed  Google Scholar 

  31. Fan MM, Raymond LA. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 2007, 81: 272–293.

    CAS  PubMed  Google Scholar 

  32. Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, et al. Increased sensitivity to N-methyl-D-aspartate in a mouse model of Huntington’s disease Neuron 2002, 33:849–860.

    CAS  PubMed  Google Scholar 

  33. Levine MS, Cepeda C, André VM. Location, location, location: Contrasting roles of synaptic and extrasynaptic NMDA receptors in Huntington’s disease. Neuron 2010, 65:145–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 2010, 65:178–190.

    CAS  PubMed  Google Scholar 

  35. Plotkin JL, Surmeier DJ. Corticostriatal synaptic adaptations in Huntington’s disease. Curr Opin Neurobiol 2015, 33:53–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Raymond LA. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2017, 483:1051–1062.

    CAS  PubMed  Google Scholar 

  37. Barbin G, Pollard H, Gaiarsa JL, Ben-Ari Y, Barria A, Muller D, et al. Spatial and temporal requirements for huntingtin (Htt) in neuronal migration and survival during brain development. J Neurosci 2001, 81:1807–1817.

    Google Scholar 

  38. Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 2007, 3:e82.

    PubMed  PubMed Central  Google Scholar 

  39. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 2003, 39:227–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I. Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model. J Neurosci 2009, 29:1257–1266.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A 2005, 102:2602–2607.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lautenschläger J, Stephens AD, Fusco G, Ströhl F, Curry N, Zacharopoulou M, et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat Commun 2018, 9: 712-25.

    PubMed  PubMed Central  Google Scholar 

  43. Chen X, Xue B, Wang J, Liu H, Shi L, Xie J. Potassium channels: A potential therapeutic target for Parkinson’s disease. Neurosci Bull 2018, 34:341–348.

    CAS  PubMed  Google Scholar 

  44. Cieri D, Brini M, Cali T. Emerging (and converging) pathways in Parkinson’s disease: keeping mitochondrial wellness. Biochem Biophys Res Commun 2016, 483:1020–1030.

    PubMed  Google Scholar 

  45. Cali T, Ottolini D, Brini M. Calcium signaling in Parkinson’s disease. Cell Tissue Res 2014, 357:439–454.

    CAS  PubMed  Google Scholar 

  46. Zaichick S V, McGrath KM, Caraveo G. The role of Ca2+ signaling in Parkinson’s disease. Dis Model Mech 2017, 10:519–535.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007, 447:1081–1086.

    CAS  PubMed  Google Scholar 

  48. Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 2009, 29:11011–11019.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Puopolo M, Raviola E, Bean BP. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 2007, 27:645–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2017, 70:87–94.

    PubMed  PubMed Central  Google Scholar 

  51. Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT. Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med 2012, 2:a009290.

    PubMed  PubMed Central  Google Scholar 

  52. Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun 2016, 483:1013–1019.

    PubMed  PubMed Central  Google Scholar 

  53. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-operated calcium entry through orai is required for transcriptional maturation of the flight circuit in Drosophila. J Neurosci 2015, 35:13784–13799.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2016, 104:4–17.

    CAS  PubMed  Google Scholar 

  55. Oliveira-Giacomelli ágatha, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, et al. Purinergic receptors in neurological diseases with motor symptoms: Targets for therapy. Front Pharmacol 2018, 9: 325. https://doi.org/10.3389/fphar.2018.00325.

  56. Ribeiro DE, Glaser T, Oliveira-Giacomelli, Ulrich H. Purinergic receptors in neurogenic processes. Brain Res Bull 2019, 151: 3–11.

  57. Ghiringhelli F, Bruchard M, Chalmin F, Rebe C. Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol 2012, 2012:473712.

    PubMed  PubMed Central  Google Scholar 

  58. Zimmermann H. Ectonucleotidases in the Nervous System. Purinergic Signalling in Neuron-Glia Interactions. Wiley 2008, 7:423–436.

    Google Scholar 

  59. Burnstock G. Introductory overview of purinergic signalling. Front Biosci (Elite Ed) 2011, 3:896–900.

    Google Scholar 

  60. Jimenez-Mateos EM, Smith J, Nicke A, Engel T. Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull 2019, 151:153–163.

    CAS  PubMed  Google Scholar 

  61. Virginio C, Church D, North RA, Surprenant A. Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 1997, 36:1285–1294.

    CAS  PubMed  Google Scholar 

  62. von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019, 151:12-24.

    Google Scholar 

  63. Neary JT. Trophic actions of extracellular ATP: gene expression profiling by DNA array analysis. J Auton Nerv Syst 2000, 81:200–4.

    CAS  PubMed  Google Scholar 

  64. Glaser T, Shimojo H, Ribeiro DE, Martins PPL, Beco RP, Kosinski M, et al. ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington’s disease: a novel approach for cell clock research. Mol Psychiatry, 2020. https://doi.org/10.1038/s41380-020-0717-5.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mori A. Mode of action of adenosine A2A receptor antagonists as symptomatic treatment for Parkinson’s disease. Int Rev Neurobiol 2014, 119:87–116.

    PubMed  Google Scholar 

  66. Lee YC, Chien CL, Sun CN, Huang CL, Huang NK, Chiang MC, et al. Characterization of the rat A2A adenosine receptor gene: A 4.8-kb promoter-proximal DNA fragment confers selective expression in the central nervous system. Eur J Neurosci 2003, 18:1786–1796.

  67. Cunha RA, Johansson B, Ploeg I, Sebastião AM, Ribeiro JA, Fredholm BB. Evidence for functionally important adenosine A2A receptors in the rat hippocampus. Brain Res 1994, 649:208–16.

    CAS  PubMed  Google Scholar 

  68. Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: An extended autoradiographic study. Synapse 1997, 27:322–335.

    CAS  PubMed  Google Scholar 

  69. Kaelin-Lang A, Lauterburg T, Burgunder J-M. Expression of adenosine A2A receptors gene in the olfactory bulb and spinal cord of rat and mouse. Neurosci Lett 1999, 261:189–91.

    CAS  PubMed  Google Scholar 

  70. Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, et al. A2A-D2 receptor–receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 2017, 140:268–279.

    CAS  PubMed  Google Scholar 

  71. Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Müller CE, Fuxe K. Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation. Front Neurosci 2018, 12:1–11.

    Google Scholar 

  72. Vuorimaa A, Rissanen E, Airas L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease. Contrast Media Mol Imaging 2017, 2017:6975841.

    PubMed  PubMed Central  Google Scholar 

  73. Shindou T, Mori A, Kase H, Ichimura M. Adenosine A 2A receptor enhances GABA A-mediated IPSCs in the rat globus pallidus. J Physiol 2001, 532:423–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shindou T, Nonaka H, Richardson PJ, Mori A, Kase H, Ichimura M. Presynaptic adenosine A2A receptors enhance GABAergic synaptic transmission via a cyclic AMP dependent mechanism in the rat globus pallidus. Br J Pharmacol 2002, 136:296–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shindou T, Richardson PJ, Mori A, Kase H, Ichimura M. Adenosine modulates the striatal GABAergic inputs to the globus pallidus via adenosine A2A receptors in rats. Neurosci Lett 2003, 352:167–170.

    CAS  PubMed  Google Scholar 

  76. Ferre S, Von Euler G, Johansson B, Fredholm BB, Fuxe K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 1991, 88:7238–7241.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferré S, Snaprud P, Fuxe K. Opposing actions of an adenosine A2 receptor agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes. Eur J Pharmacol 1993, 244:311–315.

    PubMed  Google Scholar 

  78. Ferré S, Ciruela F, Quiroz C, Luján R, Popoli P, Cunha RA, et al. Adenosine receptor heteromers and their integrative role in striatal function. ScientificWorldJournal 2007, 7:74–85.

    PubMed  PubMed Central  Google Scholar 

  79. Svenningsson P, Lindskog M, Ledent C, Parmentier M, Greengard P, Fredholm BB, et al. Regulation of the phosphorylation of the dopamine-and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci U S A 2000, 97:1856–1860.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lindskog M, Svenningsson P, Pozzi L, Kim Y, Flenberg AA, Bibb JA, et al. Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 2002, 418:774–778.

    CAS  PubMed  Google Scholar 

  81. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 2007, 83:277–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shindou T, Mori A, Kase H, Ichimura M. Adenosine A2A receptor enhances GABAA-mediated IPSCs in the rat globus pallidus. J Physiol 2001, 532:423–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Beggiato S, Tomasini MC, Borelli AC, Borroto-Escuela DO, Fuxe K, Antonelli T, et al. Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission. J Neurochem 2016, 19:254–264.

    Google Scholar 

  84. Beggiato S, Antonelli T, Tomasini M, Borelli A, Agnati L, Tanganelli S, et al. Adenosine A2A-D2 receptor-receptor interactions in putative heteromers in the regulation of the striato-pallidal GABA pathway: Possible relevance for Parkinson’s disease and its treatment. Curr Protein Pept Sci 2014, 15:673–680.

    CAS  PubMed  Google Scholar 

  85. Dayne Mayfield R, Larson G, Orona RA, Zahniser NR. Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A2a/D2 receptor interaction in globus pallidus. Synapse 1996, 22:132–8.

    CAS  PubMed  Google Scholar 

  86. Mayfield RD, Suzuki F, Zahniser NR. Adenosine A2a receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem 1993, 60:2334–2337.

    CAS  PubMed  Google Scholar 

  87. Nam HW, Bruner RC, Choi DS. Adenosine signaling in striatal circuits and alcohol use disorders. Mol Cells 2013, 36:195–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 2007, 92:210–217.

    CAS  PubMed  Google Scholar 

  89. Chergui K, Bouron A, Normand E, Mulle C. Functional GluR6 kainate receptors in the striatum: Indirect downregulation of synaptic transmission. J Neurosci 2000, 20:2175–2182.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mori A, Shindou T, Ichimura M, Nonaka H, Kase H. The role of adenosine A2A receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons. J Neurosci 1996, 76:605–611.

    Google Scholar 

  91. Aoyama S, Kase H, Borrelli E. Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an Adenosine A2A receptor antagonist. J Neurosci 2000, 20:5848–5852.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J. Immunohistochemical localization of adenosine A(2A) receptors in the rat central nervous system. J Comp Neurol 1998, 401:163–186.

    CAS  PubMed  Google Scholar 

  93. Rosin DL, Hettinger BD, Lee A, Linden J. Anatomy of adenosine A2A receptors in brain: Morphological substrates for integration of striatal function. Neurology 2003, 61 (11 Suppl 6):S12-18. https://doi.org/10.1212/01.wnl.0000095205.33940.99.

    Article  CAS  PubMed  Google Scholar 

  94. Ferré S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueño J, Gutiérrez MA, et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proc Natl Acad Sci U S A 2002, 99:11940–11945.

    PubMed  PubMed Central  Google Scholar 

  95. Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA. Co-localization and functional interaction between adenosine A2A and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 2005, 92:433–441.

    PubMed  Google Scholar 

  96. Díaz-Cabiale Z, Vivó M, Del Arco A, O’Connor WT, Harte MK, Müller CE, et al. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2A and dopamine D2 receptors. Neurosci Lett 2002, 324:154–158.

  97. Ferré S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K. Adenosine A(2A) and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology 1999, 38:129–140.

    PubMed  Google Scholar 

  98. Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 2005, 25:10414–10419.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Popoli P, Pèzzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, et al. The selective mGlu5 receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D2 receptors in the rat striatum: Interactions with adenosine A2a receptors. Neuropsychopharmacology 2001, 25:505–513.

    CAS  PubMed  Google Scholar 

  100. Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 2008, 57:121–134.

    CAS  PubMed  Google Scholar 

  101. Zhu C, Wang G, Li J, Chen L, Wang C, Wang Y, et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol Res 2014, 36:1028–1034.

    CAS  PubMed  Google Scholar 

  102. Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M. Modification of adenosine extracellular levels and adenosine A2A receptor mRNA by dopamine denervation. Eur J Pharmacol 2002, 446:75–82.

    CAS  PubMed  Google Scholar 

  103. Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 2004, 127:1075–1084.

    PubMed  Google Scholar 

  104. Mishina M, Ishiwata K, Naganawa M, Kimura Y, Kitamura S, Suzuki M, et al. Adenosine A2A receptors measured with [11C]TMSX pet in the striata of parkinson’s disease patients. PLoS One 2011, 6: e17338.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 2011, 76:1811–1816.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tomiyama M, Kimura T, Maeda T, Tanaka H, Kannari K, Baba MA. Upregulation of striatal adenosine A2A receptor mRNA in 6-Hydroxydopamine-lesioned rats intermittently treated with L-DOPA. Synapse 2004, 52:218–222.

    CAS  PubMed  Google Scholar 

  107. Ochi M, Koga K, Kurokawa M, Kase H, Nakamura J, Kuwana Y. Systemic administration of adenosine A(2A) receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: A microdialysis study. Neuroscience 2000, 100:53–62.

    CAS  PubMed  Google Scholar 

  108. Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 2006, 9:251–259.

    CAS  PubMed  Google Scholar 

  109. Kumari N, Agrawal S, Kumari R, Sharma D, Luthra P. Neuroprotective effect of IDPU (1-(7-imino-3-propyl-2,3-dihydrothiazolo[4,5-d]pyrimidin-6(7H)-yl)urea) in 6-OHDA induced rodent model of hemiparkinson’s disease. Neurosci Lett 2018, 675:74–82.

    CAS  PubMed  Google Scholar 

  110. Morissette M, Dridi M, Calon F, Hadjtahar A, Meltzer L, Bédard PJ, et al. Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: Effect on adenosine A2A receptors. Synapse 2006, 60:239–250.

    CAS  PubMed  Google Scholar 

  111. Diógenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 2012, 32:11750–11762.

    PubMed  PubMed Central  Google Scholar 

  112. Ferreira DG, Batalha VL, Miranda HV, Coelho JE, Gomes R, Gonçalves FQ, et al. Adenosine A2A receptors modulate α-synuclein aggregation and toxicity. Cereb Cortex 2017, 27:718–730.

    PubMed  Google Scholar 

  113. Hu Q, Ren X, Liu Y, Li Z, Zhang L, Chen X, et al. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Exp Neurol 2016, 283:213–223.

    CAS  PubMed  Google Scholar 

  114. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 1988, 85:5733–5737.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dhaenens CM, Burnouf S, Simonin C, Van Brussel E, Duhamel A, Defebvre L, et al. A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiol Dis 2009, 35:474–476.

    CAS  PubMed  Google Scholar 

  116. Glass M, Dragunow M, Faull RLM. The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000, 97:505–519.

    CAS  PubMed  Google Scholar 

  117. Bauer A, Zilles K, Matusch A, Holzmann C, Riess O, Von Hörsten S. Regional and subtype selective changes of neurotransmitter receptor density in a rat transgenic for the Huntington’s disease mutation. J Neurochem 2005, 94:639–650.

    CAS  PubMed  Google Scholar 

  118. Cha JHJ, Frey AS, Alsdorf SA, Kerner JA, Kosinski CM, Mangiarini L, et al. Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc B Biol Sci 1999, 354:981–989.

    CAS  Google Scholar 

  119. Chiang MC, Lee YC, Huang CL, Chern Y. cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant huntingtin with expanded polyglutamine residues. J Biol Chem 2005, 280:14331–14340.

    CAS  PubMed  Google Scholar 

  120. Mievis S, Blum D, Ledent C. A2A receptor knockout worsens survival and motor behaviour in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 2011, 41:570–576.

    CAS  PubMed  Google Scholar 

  121. Villar-Menéndez I, Blanch M, Tyebji S, Pereira-Veiga T, Albasanz JL, Martín M, et al. Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neuromolecular Med 2013, 15:295–309.

    PubMed  Google Scholar 

  122. Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, et al. CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 2005, 93:310–320.

    CAS  PubMed  Google Scholar 

  123. Tyebji S, Saavedra A, Canas PM, Pliassova A, Delgado-García JM, Alberch J, et al. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington’s disease. Neurobiol Dis 2015, 74:41–57.

    CAS  PubMed  Google Scholar 

  124. Domenici MR, Scattoni ML, Martire A, Lastoria G, Potenza RL, Borioni A, et al. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 2007, 28:197–205.

    CAS  PubMed  Google Scholar 

  125. Li W, Silva HB, Real J, Wang YM, Rial D, Li P, et al. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol Dis, 2015, 79:70–80.

    CAS  PubMed  Google Scholar 

  126. Sluyter R. The P2X7 receptor. Advances in experimental medicine and biology. 2017, 1051:17-53.

    PubMed  Google Scholar 

  127. Illes P, Khan TM, Rubini P. Neuronal P2X7 receptors revisited: Do they really exist? J Neurosci 2017, 37:7049-62.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Miras-Portugal MT, Sebastián-Serrano Á, de Diego García L, Díaz-Hernández M. Neuronal P2X7 receptor: Involvement in neuronal physiology and pathology. J Neurosci 2017, 37:7063-72.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sim JA. Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 2004, 24: 6307-6314.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, et al. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 2001, 21:7143–7152.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sperlágh B, Köfalvi A, Deuchars J, Atkinson L, Milligan CJ, Buckley NJ, et al. Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 2002, 81:1196-211.

    PubMed  Google Scholar 

  132. Wirkner K, Köfalvi A, Fischer W, Günther A, Franke H, Gröger-Arndt H, et al. Supersensitivity of P2X7 receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 2005, 95:1421-37.

    CAS  PubMed  Google Scholar 

  133. Yue N, Huang H, Zhu X, Han Q, Wang Y, Li B, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 2017, 14:102. https://doi.org/10.1186/s12974-017-0865-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, et al. Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 2008, 1194:45–55.

    CAS  PubMed  Google Scholar 

  135. Metzger MW, Walser SM, Aprile-Garcia F, Dedic N, Chen A, Holsboer F, et al. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signal 2017, 13:153–170.

    CAS  PubMed  Google Scholar 

  136. Masin M, Young C, Lim K, Barnes SJ, Xu XJ, Marschall V, et al. Expression, assembly and function of novel C-terminal truncated variants of the mouse P2X7 receptor: Re-evaluation of P2X7 knockouts. Br J Pharmacol 2012,165: 978–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sánchez-Nogueiro J, Marín-García P, Miras-Portugal MT. Characterization of a functional P2X7-like receptor in cerebellar granule neurons from P2X7 knockout mice. FEBS Lett 2005, 17:3783–3788.

    Google Scholar 

  138. Sim JA, Young MT, Sung HY, North RA, Surprenant A. Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 2004, 24:6307–6314.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Anderson CM, Nedergaard M. Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 2006, 29:257–62.

    CAS  PubMed  Google Scholar 

  140. Carrasquero LMG, Delicado EG, Bustillo D, Gutiérrez-Martín Y, Artalejo AR, Miras-Portugal MT. P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J Neurochem 2009, 110:879–889.

    CAS  PubMed  Google Scholar 

  141. Díaz-Hernandez M, Puerto A del, Díaz-Hernandez JI, Diez-Zaera M, Lucas JJ, Garrido JJ, et al. Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J Cell Sci 2008, 121:3717–28.

    PubMed  Google Scholar 

  142. Hervás C, Pérez-Sen R, Miras-Portugal MT. Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 2003, 73:384–399.

    PubMed  Google Scholar 

  143. Ortega F, Pérez-Sen R, Delicado EG, Miras-Portugal MT. P2X7 Nucleotide Receptor is Coupled to GSK-3 Inhibition and Neuroprotection in Cerebellar Granule Neurons. Neurotox Res 2009, 15:193–204.

    CAS  PubMed  Google Scholar 

  144. Rubini P, Pagel G, Mehri S, Marquardt P, Riedel T, Illes P. Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons. Naunyn Schmiedebergs Arch Pharmacol 2014, 387:943–54.

    CAS  PubMed  Google Scholar 

  145. Khan MT, Deussing J, Tang Y, Illes P. Astrocytic rather than neuronal P2X7 receptors modulate the function of the tri-synaptic network in the rodent hippocampus. Brain Res Bull 2018, 151:164–173.

    PubMed  Google Scholar 

  146. Sperlágh B, Illes P. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 2014, 35:537–547.

    PubMed  Google Scholar 

  147. Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The P2X7 receptor: A main player in inflammation. Biochem Pharmacol 2018, 151:234–244.

    CAS  PubMed  Google Scholar 

  148. Díaz-Hernández M, Díez-Zaera M, Sánchez-Nogueiro J, Gómez-Villafuertes R, Canals JM, Alberch J, et al. Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J 2009, 23:1893–1906.

    PubMed  Google Scholar 

  149. Marcellino D, Suárez-Boomgaard D, Sánchez-Reina MD, Aguirre JA, Yoshitake T, Yoshitake S, et al. On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079. J Neural Transm 2010, 117:681–687.

    CAS  PubMed  Google Scholar 

  150. Carmo MRS, Menezes APF, Nunes ACL, Pliássova A, Rolo AP, Palmeira CM, et al. The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology 2014, 81:142–152.

    CAS  PubMed  Google Scholar 

  151. Ferrazoli EG, de Souza HDN, Nascimento IC, Oliveira-Giacomelli Á, Schwindt TT, Britto LR, et al. Brilliant blue-G but not fenofibrate treatment reverts hemiparkinsonian behavior and restores dopamine levels in an animal model of Parkinson’s disease. Cell Transplant 2017, 26:669–677.

    PubMed  PubMed Central  Google Scholar 

  152. Oliveira-Giacomelli Á, M. Albino C, de Souza HDN, Corrêa-Velloso J, de Jesus Santos AP, Baranova J, et al. P2Y6 and P2X7 receptor antagonism exerts neuroprotective/ neuroregenerative effects in an animal model of Parkinson’s disease. Front Cell Neurosci 2019, 13: 476–89.

  153. Jiang T, Hoekstra J, Heng X, Kang W, Ding J, Liu J, et al. P2X7 receptor is critical in α-synuclein-mediated microglial NADPH oxidase activation. Neurobiol Aging 2015, 36:2304–2318.

    CAS  PubMed  Google Scholar 

  154. Wilkaniec A, Gąssowska M, Czapski GA, Cieślik M, Sulkowski G, Adamczyk A. P2X7 receptor-pannexin 1 interaction mediates extracellular alpha-synuclein-induced ATP release in neuroblastoma SH-SY5Y cells. Purinergic Signal 2017, 13:347–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, et al. A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 2001, 276:11135–11142.

    CAS  PubMed  Google Scholar 

  156. Liu H, Han X, Li Y, Zou H, Xie A. Association of P2X7 receptor gene polymorphisms with sporadic Parkinson’s disease in a Han Chinese population. Neurosci Lett 2013, 546:42–45.

    CAS  PubMed  Google Scholar 

  157. Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997, 20:482–487.

    PubMed  Google Scholar 

  158. Blum D, Gall D, Galas MC, D’Alcantara P, Bantubungi K, Schiffmann SN. The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 2002, 22:9122–9133.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Zuchora B, Urbańska EM. Effect of adenosine receptor agonists on neurodegenerative and convulsive activity of mitochondrial toxin, 3-nitropropionic acid. Pol J Pharmacol 2001, 53:69–71.

    CAS  PubMed  Google Scholar 

  160. Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 2003, 23:10982–10987.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Gan M, Moussaud S, Jiang P, McLean PJ. Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol Aging 2015, 36:1209–1220.

    CAS  PubMed  Google Scholar 

  162. Koh JY, Kim HN, Hwang JJ, Kim YH, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: Possible therapeutic roles of cAMP and zinc. Mol Brain 2019, 12:18. https://doi.org/10.1186/s13041-019-0439-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qian Y, Xu S, Yang X, Xiao Q. Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J Neurosci Res 2018, 96:253–264.

    CAS  PubMed  Google Scholar 

  164. Kim B, Jeong HK, Kim JH, Lee SY, Jou I, Joe EH. Uridine 5’-Diphosphate induces chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. J Immunol 2011, 186:3701–3709.

    CAS  PubMed  Google Scholar 

  165. Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J, et al. Microglia P2Y6 receptor is related to Parkinson’s disease through neuroinflammatory process. J Neuroinflammation, 2017, 14:38.

    PubMed  PubMed Central  Google Scholar 

  166. Neher JJ, Neniskyte U, Hornik T, Brown GC. Inhibition of UDP/P2Y 6purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia, 2014, 62:1463–1475.

    PubMed  PubMed Central  Google Scholar 

  167. Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, et al. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res, 1992, 14:186–195

  168. Chen J-F. Adenosine receptor control of cognition in normal and disease. International Review of Neurobiology, vol. 119. Elsevier; 2014:257–307.

  169. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPAinduced motor complications. Prog Neurobiol, 2007, 83:293–309.

  170. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol, 2000, 362:375–381.

  171. Haskó G, Pacher P, Vizi ES, Illes P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci, 2005, 26:511–516.

  172. Othman T, Yan H, Rivkees SA. Oligodendrocytes Express Functional A1 Adenosine Receptors That Stimulate Cellular Migration. Glia, 2003, 44:166–172.

  173. Burnstock G, Kennedy C. P2X Receptors in Health and Disease. Advances in Pharmacology, vol. 61. Academic Press Inc.; 2011:333–372.

  174. Khaira SK, Pouton CW, Haynes JM. P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca 2+ in mouse embryonic stem cell-derived GABAergic neurons. Br J Pharmacol, 2009, 158:1922–1931.

  175. Burnstock G. Introduction: ATP and Its Metabolites as Potent Extracellular Agents. Curr Top Membr, 2003:1–27.

Download references

Acknowledgements

This review was supported by the São Paulo Research Foundation (FAPESP; 2018/07366-4) and a Fellowship from the National Council for Scientific and Technological Development (CNPq; 306392/2017-8). TG, AOG, and DER are grateful for postdoctoral fellowships from FAPESP (2015/13345-1, 2019/26852-0, and 2018/17504-5). RA is grateful for a doctoral fellowship from FAPESP (2019/24553-5). LBM is thankful for a master fellowship from CNPq (133396/2019-3). QY is grateful for the fellowship from National Key R&D Program of China (2019YFC1709101), The Project First-Class Disciplines Development (CZYHW1901) of Chengdu University of TCM and Sichuan Science and Technology Program (2019YFH0108, 2018SZ0257). AS work was supported by Russian Science Foundation grant 20-14-00241. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich.

Ethics declarations

Conflict of interest

The authors claim that there are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glaser, T., Andrejew, R., Oliveira-Giacomelli, Á. et al. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington’s and Parkinson’s Disease. Neurosci. Bull. 36, 1299–1314 (2020). https://doi.org/10.1007/s12264-020-00582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00582-8

Keywords

Navigation