Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse


Mounting evidence suggests that the ATP-gated P2X7 receptor contributes to increased hyperexcitability in the brain. While increased expression of P2X7 in the hippocampus and cortex following status epilepticus and during epilepsy has been repeatedly demonstrated, the cell type-specific expression of P2X7 and its expression in extra-hippocampal brain structures remains incompletely explored. In this study, P2X7 expression was visualized by using a transgenic mouse model overexpressing P2X7 fused to the fluorescent protein EGFP. The results showed increased P2X7-EGFP expression after status epilepticus induced by intra-amygdala kainic acid and during epilepsy in different brain regions including the hippocampus, cortex, striatum, thalamus and cerebellum, and this was most evident in microglia and oligodendrocytes. Co-localization of P2X7-EGFP with cell type-specific markers was not detected in neurons or astrocytes. These data suggest that P2X7 activation is a common pathological hallmark across different brain structures, possibly contributing to brain inflammation and neurodegeneration following acute seizures and during epilepsy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Engel T, Alves M, Sheedy C, Henshall DC. ATPergic signalling during seizures and epilepsy. Neuropharmacology 2016, 104: 140–153.

    CAS  PubMed  Google Scholar 

  2. 2.

    Burnstock G. Purinergic signalling: Therapeutic developments. Front Pharmacol 2017, 8: 661.

    PubMed  Google Scholar 

  3. 3.

    Burnstock G. Introduction to purinergic signalling in the brain. Adv Exp Med Biol 2020, 1202: 1–12.

    CAS  PubMed  Google Scholar 

  4. 4.

    Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet 2015, 385: 884–898.

    PubMed  Google Scholar 

  5. 5.

    Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010, 9: 68–82.

    CAS  PubMed  Google Scholar 

  6. 6.

    Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011, 10: 173–186.

    PubMed  Google Scholar 

  7. 7.

    Pitkanen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med 2015, 5.

  8. 8.

    Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019, 15: 459–472.

    CAS  PubMed  Google Scholar 

  9. 9.

    Engel J, Jr. Approaches to refractory epilepsy. Ann Indian Acad Neurol 2014, 17: S12–17.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Chang BS, Lowenstein DH. Epilepsy. N Engl J Med 2003, 349: 1257–1266.

    PubMed  Google Scholar 

  11. 11.

    Sperlagh B, Illes P. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 2014, 35: 537–547.

    CAS  PubMed  Google Scholar 

  12. 12.

    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 1996, 272: 735–738.

    CAS  PubMed  Google Scholar 

  13. 13.

    Jimenez-Mateos EM, Smith J, Nicke A, Engel T. Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull 2019, 151: 153–163.

    CAS  PubMed  Google Scholar 

  14. 14.

    Kopp R, Krautloher A, Ramirez-Fernandez A, Nicke A. P2X7 Interactions and signaling - making head or tail of it. Front Mol Neurosci 2019, 12: 183.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature 2014, 509: 310–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Beamer E, Conte G, Engel T. ATP release during seizures - A critical evaluation of the evidence. Brain Res Bull 2019, 151: 65–73.

    CAS  PubMed  Google Scholar 

  17. 17.

    Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in infection and inflammation. Immunity 2017, 47: 15–31.

    PubMed  Google Scholar 

  18. 18.

    Kaczmarek-Hajek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. Elife 2018, 7.

  19. 19.

    Armstrong JN, Brust TB, Lewis RG, MacVicar BA. Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 2002, 22: 5938–5945.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Khan MT, Deussing J, Tang Y, Illes P. Astrocytic rather than neuronal P2X7 receptors modulate the function of the tri-synaptic network in the rodent hippocampus. Brain Res Bull 2019, 151: 164–173.

    CAS  PubMed  Google Scholar 

  21. 21.

    Jabs R, Matthias K, Grote A, Grauer M, Seifert G, Steinhauser C. Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 2007, 55: 1648–1655.

    PubMed  Google Scholar 

  22. 22.

    Illes P, Khan TM, Rubini P. Neuronal P2X7 receptors revisited: Do They Really Exist? J Neurosci 2017, 37: 7049–7062.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Miras-Portugal MT, Sebastian-Serrano A, de Diego Garcia L, Diaz-Hernandez M. Neuronal P2X7 receptor: Involvement in neuronal physiology and pathology. J Neurosci 2017, 37: 7063–7072.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gomez-Villafuertes R, Gualix J, et al. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2019, 151: 74–83.

    CAS  PubMed  Google Scholar 

  25. 25.

    Monif M, Reid CA, Powell KL, Smart ML, Williams DA. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 2009, 29: 3781–3791.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang M, Chen Y. Inflammation: A network in the pathogenesis of status epilepticus. Front Mol Neurosci 2018, 11: 341.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, et al. Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 2012, 26: 1616–1628.

    CAS  PubMed  Google Scholar 

  28. 28.

    Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R, et al. Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia 2013, 54: 1551–1561.

    CAS  PubMed  Google Scholar 

  29. 29.

    Jimenez-Pacheco A, Diaz-Hernandez M, Arribas-Blazquez M, Sanz-Rodriguez A, Olivos-Ore LA, Artalejo AR, et al. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J Neurosci 2016, 36: 5920–5932.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rappold PM, Lynd-Balta E, Joseph SA. P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res 2006, 1089: 171–178.

    CAS  PubMed  Google Scholar 

  31. 31.

    Dona F, Ulrich H, Persike DS, Conceicao IM, Blini JP, Cavalheiro EA, et al. Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 2009, 83: 157–167.

    CAS  PubMed  Google Scholar 

  32. 32.

    Huang C, Chi XS, Li R, Hu X, Xu HX, Li JM, et al. Inhibition of P2X7 receptor ameliorates nuclear factor-Kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci 2017, 63: 173–184.

    CAS  PubMed  Google Scholar 

  33. 33.

    Fischer W, Franke H, Krugel U, Muller H, Dinkel K, Lord B, et al. Critical evaluation of P2X7 receptor antagonists in selected seizure models. PLoS One 2016, 11: e0156468.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Nieoczym D, Socala K, Wlaz P. Evaluation of the anticonvulsant effect of brilliant blue G, a selective P2X7 receptor antagonist, in the iv PTZ-, maximal electroshock-, and 6 Hz-induced seizure tests in mice. Neurochem Res 2017, 42: 3114–3124.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kim JE, Ryu HJ, Kang TC. P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-alpha-mediated pathway in the rat hippocampus following status epilepticus. J Neuroinflammation 2011, 8: 62.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Rozmer K, Gao P, Araujo MGL, Khan MT, Liu J, Rong W, et al. Pilocarpine-induced status epilepticus increases the sensitivity of P2X7 and P2Y1 receptors to nucleotides at neural progenitor cells of the Juvenile Rodent hippocampus. Cereb Cortex 2017, 27: 3568–3585.

    PubMed  Google Scholar 

  37. 37.

    Amhaoul H, Ali I, Mola M, Van Eetveldt A, Szewczyk K, Missault S, et al. P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology 2016, 105: 175–185.

    CAS  PubMed  Google Scholar 

  38. 38.

    Moran C, Sanz-Rodriguez A, Jimenez-Pacheco A, Martinez-Villareal J, McKiernan RC, Jimenez-Mateos EM, et al. Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Dis 2013, 4: e606.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C, et al. CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. Brain 2013, 136: 577–592.

    PubMed  Google Scholar 

  40. 40.

    Alves M, De Diego Garcia L, Conte G, Jimenez-Mateos EM, D’Orsi B, Sanz-Rodriguez A, et al. Context-specific switch from Aanti- to pro-epileptogenic function of the P2Y1 receptor in experimental epilepsy. J Neurosci 2019, 39: 5377–5392.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Engel T, Gomez-Sintes R, Alves M, Jimenez-Mateos EM, Fernandez-Nogales M, Sanz-Rodriguez A, et al. Bi-directional genetic modulation of GSK-3beta exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis 2018, 9: 969.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, et al. Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res 2008, 1213: 140–151.

    CAS  PubMed  Google Scholar 

  43. 43.

    Salanova V, Witt T, Worth R, Henry TR, Gross RE, Nazzaro JM, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015, 84: 1017–1025.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Streng ML, Krook-Magnuson E. The cerebellum and epilepsy. Epilepsy Behav 2020: 106909.

  45. 45.

    Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 2012, 18: 1087–1094.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Vianna EP, Ferreira AT, Naffah-Mazzacoratti MG, Sanabria ER, Funke M, Cavalheiro EA, et al. Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: fluorimetric, immunohistochemical, and Western blot studies. Epilepsia 2002, 43 Suppl 5: 227–229.

    CAS  PubMed  Google Scholar 

  47. 47.

    Beamer E, Fischer W, Engel T. The ATP-gated P2X7 receptor as a target for the treatment of drug-resistant epilepsy. Front Neurosci 2017, 11: 21.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    DeCarli C, Hatta J, Fazilat S, Fazilat S, Gaillard WD, Theodore WH. Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol 1998, 43: 41–45.

    CAS  PubMed  Google Scholar 

  49. 49.

    Moran NF, Lemieux L, Kitchen ND, Fish DR, Shorvon SD. Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. Brain 2001, 124: 167–175.

    CAS  PubMed  Google Scholar 

  50. 50.

    Blumenfeld H. The thalamus and seizures. Arch Neurol 2002, 59: 135–137.

    PubMed  Google Scholar 

  51. 51.

    Tschampa HJ, Greschus S, Sassen R, Bien CG, Urbach H. Thalamus lesions in chronic and acute seizure disorders. Neuroradiology 2011, 53: 245–254.

    PubMed  Google Scholar 

  52. 52.

    Liu RS, Lemieux L, Bell GS, Sisodiya SM, Bartlett PA, Shorvon SD, et al. Cerebral damage in epilepsy: a population-based longitudinal quantitative MRI study. Epilepsia 2005, 46: 1482–1494.

    PubMed  Google Scholar 

  53. 53.

    Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I. Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy. eNeuro 2014, 1.

  54. 54.

    Kucker S, Tollner K, Piechotta M, Gernert M. Kindling as a model of temporal lobe epilepsy induces bilateral changes in spontaneous striatal activity. Neurobiol Dis 2010, 37: 661–672.

    PubMed  Google Scholar 

  55. 55.

    Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, et al. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun 2019, 10: 1917.

    Google Scholar 

  56. 56.

    Deransart C, Riban V, Le B, Marescaux C, Depaulis A. Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 2000, 100: 335–344.

    CAS  PubMed  Google Scholar 

  57. 57.

    Martin E, Amar M, Dalle C, Youssef I, Boucher C, Le Duigou C, et al. New role of P2X7 receptor in an Alzheimer’s disease mouse model. Mol Psychiatry 2019, 24: 108–125.

    CAS  PubMed  Google Scholar 

  58. 58.

    Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 2013, 7: 157.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Crabbe M, Van der Perren A, Bollaerts I, Kounelis S, Baekelandt V, Bormans G, et al. Increased P2X7 receptor binding is associated with neuroinflammation in acute but not chronic rodent models for Parkinson’s disease. Front Neurosci 2019, 13: 799.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011, 8: 52.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Vezzani A, Friedman A. Brain inflammation as a biomarker in epilepsy. Biomark Med 2011, 5: 607–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chen YC, Zhu GY, Wang X, Shi L, Du TT, Liu DF, et al. Anterior thalamic nuclei deep brain stimulation reduces disruption of the blood-brain barrier, albumin extravasation, inflammation and apoptosis in kainic acid-induced epileptic rats. Neurol Res 2017, 39: 1103–1113.

    PubMed  Google Scholar 

  63. 63.

    Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018, 9: 52.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016, 64: 1772–1787.

    PubMed  Google Scholar 

  65. 65.

    Domercq M, Vazquez-Villoldo N, Matute C. Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 2013, 7: 49.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 2008, 105: 17151–17156.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci 2014, 37: 55–65.

    CAS  PubMed  Google Scholar 

  68. 68.

    Matute C. P2X7 receptors in oligodendrocytes: a novel target for neuroprotection. Mol Neurobiol 2008, 38: 123–128.

    CAS  PubMed  Google Scholar 

  69. 69.

    Luo Y, Hu Q, Zhang Q, Hong S, Tang X, Cheng L, et al. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res 2015, 1627: 154–164.

    CAS  PubMed  Google Scholar 

  70. 70.

    Hu X, Wang JY, Gu R, Qu H, Li M, Chen L, et al. The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath - an experimental study. Eur Rev Med Pharmacol Sci 2016, 20: 4516–4524.

    CAS  PubMed  Google Scholar 

  71. 71.

    Amadio S, Parisi C, Piras E, Fabbrizio P, Apolloni S, Montilli C, et al. Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Front Immunol 2017, 8: 1529.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, et al. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 2007, 27: 9525–9533.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, et al. Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 2008, 1194: 45–55.

    CAS  PubMed  Google Scholar 

  74. 74.

    Feng JF, Gao XF, Pu YY, Burnstock G, Xiang Z, He C. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration. Purinergic Signal 2015, 11: 361–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR, et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 2015, 5: 17486.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Casper KB, McCarthy KD. GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 2006, 31: 676–684.

    CAS  PubMed  Google Scholar 

  77. 77.

    Ahmed AI, Shtaya AB, Zaben MJ, Owens EV, Kiecker C, Gray WP. Endogenous GFAP-positive neural stem/progenitor cells in the postnatal mouse cortex are activated following traumatic brain injury. J Neurotrauma 2012, 29: 828–842.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL. Axonal mRNA transport and translation at a glance. J Cell Sci 2018, 131.

Download references


This work was supported by funding from the Health Research Board (HRA-POR-2015-1243), the Science Foundation Ireland (17/CDA/4708 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners 16/RC/3948), H2020 Marie Skłodowksa-Curie Actions Individual Fellowships (753527, 796600 and 844956), the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement (766124), and the Deutsche Forschungsgemeinschaft (German Research Foundation; Project-ID 335447717 - SFB 1328).

Author information



Corresponding author

Correspondence to Tobias Engel.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7516 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgan, J., Alves, M., Conte, G. et al. Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neurosci. Bull. (2020).

Download citation


  • Purinergic signaling
  • P2X7
  • Green fluorescence protein
  • Status epilepticus
  • Epilepsy
  • Cell type-specific expression