Skip to main content

Advertisement

Log in

Inflammation in Mental Disorders: Is the Microbiota the Missing Link?

Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Research suggests that inflammation is important in the pathophysiology of mental disorders. In addition, a growing body of evidence has led to the concept of the microbiota-gut-brain axis. To understand the potential interactions, we begin by exploring the liaison between the immune system and mental disorders, then we describe the evidence that the microbiota impact the immune response in the developing brain. Next, we review the literature that has documented microbiome alterations in major mental disorders. We end with a summary of therapeutic applications, ranging from psycho-biotics to immunomodulatory drugs that could affect the microbiota-gut-brain axis, and potential treatments to alleviate the adverse effects of antipsychotics. We conclude that there is promising evidence to support the position that the microbiota plays an important role in the immunological pathophysiology of mental disorders with an emphasis on psychotic disorders and mood disorders. However, more research is needed to elucidate the mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390: 1211–1259.

  2. Chong HY, Teoh SL, Wu DB-C, Kotirum S, Chiou C-F, Chaiyakunapruk N. Global economic burden of schizophrenia: a systematic review. Neuropsychiatr Dis Treat 2016, 12: 357–373.

  3. Arciniegas DB. Psychosis. Continuum (Minneap Minn) 2015, 21: 715–736.

  4. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Arlington: American Psychiatric Association, 2013.

    Google Scholar 

  5. Tamminga CA, Ivleva EI, Keshavan MS, Pearlson GD, Clementz BA, Witte B, et al. Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry 2013, 170: 1263–1274.

    PubMed  Google Scholar 

  6. García-Bueno B, Bioque M, MacDowell KS, Santabárbara J, Martínez-Cengotitabengoa M, Moreno C, et al. Pro-/antiinflammatory dysregulation in early psychosis: results from a 1-year follow-up study. Int J Neuropsychopharmacol 2014, 18. https://doi.org/10.1093/ijnp/pyu037.

  7. Cussotto S, Sandhu KV, Dinan TG, Cryan JF. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Front Neuroendocrinol 2018, 51: 80–101.

    CAS  PubMed  Google Scholar 

  8. Hong J, Reed C, Novick D, Haro JM, Aguado J. Clinical and economic consequences of medication non-adherence in the treatment of patients with a manic/mixed episode of bipolar disorder: results from the European Mania in Bipolar Longitudinal Evaluation of Medication (EMBLEM) study. Psychiatry Res 2011, 190: 110–114.

    PubMed  Google Scholar 

  9. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011, 108: 3047–3052.

    PubMed  Google Scholar 

  10. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012, 13: 701–712.

    CAS  PubMed  Google Scholar 

  11. Sundquist K, Li X, Hemminki K, Sundquist J. Subsequent risk of hospitalization for neuropsychiatric disorders in patients with rheumatic diseases: a nationwide study from Sweden. Arch Gen Psychiatry 2008, 65: 501–507.

    PubMed  Google Scholar 

  12. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry 2011, 168: 1303–1310.

    PubMed  Google Scholar 

  13. Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 2014, 75: 300–306.

    PubMed  Google Scholar 

  14. Cascella NG, Kryszak D, Bhatti B, Gregory P, Kelly DL, Mc Evoy JP, et al. Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophr Bull 2011, 37: 94–100.

    PubMed  Google Scholar 

  15. Khandaker GM, Zammit S, Lewis G, Jones PB. A population-based study of atopic disorders and inflammatory markers in childhood before psychotic experiences in adolescence. Schizophr Res 2014, 152: 139–145.

    PubMed  PubMed Central  Google Scholar 

  16. Tiosano S, Nir Z, Gendelman O, Comaneshter D, Amital H, Cohen AD, et al. The association between systemic lupus erythematosus and bipolar disorder - a big data analysis. Eur Psychiatry 2017, 43: 116–119.

    CAS  PubMed  Google Scholar 

  17. Tiosano S, Farhi A, Watad A, Grysman N, Stryjer R, Amital H, et al. Schizophrenia among patients with systemic lupus erythematosus: population-based cross-sectional study. Epidemiol Psychiatr Sci 2017, 26: 424–429.

    CAS  PubMed  Google Scholar 

  18. Jackson J, Eaton W, Cascella N, Fasano A, Santora D, Sullivan K, et al. Gluten sensitivity and relationship to psychiatric symptoms in people with schizophrenia. Schizophr Res 2014, 159: 539–542.

    PubMed  PubMed Central  Google Scholar 

  19. Kumar V, Mattoo SK, Handa S. Psychiatric morbidity in pemphigus and psoriasis: a comparative study from India. Asian J Psychiatr 2013, 6: 151–156.

    PubMed  Google Scholar 

  20. Kota SK, Meher LK, Jammula S, Kota SK, Modi KD. Clinical profile of coexisting conditions in type 1 diabetes mellitus patients. Diabetes Metab Syndr 2012, 6: 70–76.

    PubMed  Google Scholar 

  21. Sturdy PM, Victor CR, Anderson HR, Bland JM, Butland BK, Harrison BDW, et al. Psychological, social and health behaviour risk factors for deaths certified as asthma: a national case-control study. Thorax 2002, 57: 1034–1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gilvarry CM, Sham PC, Jones PB, Cannon M, Wright P, Lewis SW, et al. Family history of autoimmune diseases in psychosis. Schizophr Res 1996, 19: 33–40.

    CAS  PubMed  Google Scholar 

  23. Nasr S, Altman EG, Meltzer HY. Concordance of atopic and affective disorders. J Affect Disord 1981, 3: 291–296.

    CAS  PubMed  Google Scholar 

  24. Osterberg E. Schizophrenia and rheumatic disease. A study on the concurrence of inflammatory joint diseases and a review of 58 case-records. Acta Psychiatr Scand 1978, 58: 339–359.

    CAS  PubMed  Google Scholar 

  25. Corvin A, Morris DW. Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry 2014, 75: 276–283.

    CAS  PubMed  Google Scholar 

  26. Liu JF, Wu R, Li JX. Toll of mental disorders: TLR-mediated function of the innate immune system. Neurosci Bull 2019, 35: 771–774.

    PubMed  PubMed Central  Google Scholar 

  27. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American Gut: an open platform for citizen science microbiome research. mSystems 2018, 3: e00031-18.

    PubMed  PubMed Central  Google Scholar 

  28. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell 2014, 159: 789–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Song X, Fan X, Song X, Zhang J, Zhang W, Li X, et al. Elevated levels of adiponectin and other cytokines in drug naïve, first episode schizophrenia patients with normal weight. Schizophr Res 2013, 150: 269–273.

    PubMed  Google Scholar 

  30. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011, 70: 663–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 2008, 63: 801–808.

    CAS  PubMed  Google Scholar 

  32. Tourjman V, Kouassi É, Koué M-È, Rocchetti M, Fortin-Fournier S, Fusar-Poli P, et al. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 2013, 151: 43–47.

    PubMed  Google Scholar 

  33. Wood SJ, Yung AR, McGorry PD, Pantelis C. Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biol Psychiatry 2011, 70: 619–625.

    PubMed  Google Scholar 

  34. Niu Z, Yang L, Wu X, Zhu Y, Chen J, Fang Y. The relationship between neuroimmunity and bipolar disorder: mechanism and translational application. Neurosci Bull 2019, 35: 595–607.

    PubMed  PubMed Central  Google Scholar 

  35. Suvisaari J, Mantere O. Inflammation theories in psychotic disorders: a critical review. Infect Disord Drug Targets 2013, 13: 59–70.

    CAS  PubMed  Google Scholar 

  36. Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, et al. The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32: 42–48.

    CAS  PubMed  Google Scholar 

  37. Okada H, Kuhn C, Feillet H, Bach JF. The “hygiene hypothesis” for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010, 160: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Groot PF, Belzer C, Aydin Ö, Levin E, Levels JH, Aalvink S, et al. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS One 2017, 12: e0188475.

    PubMed  PubMed Central  Google Scholar 

  39. Knip M, Honkanen J. Modulation of type 1 diabetes risk by the intestinal microbiome. Curr Diab Rep 2017, 17: 105.

    PubMed  Google Scholar 

  40. Wekerle H. Nature, nurture, and microbes: The development of multiple sclerosis. Acta Neurol Scand 2017, 136 Suppl 201: 22–25.

    PubMed  Google Scholar 

  41. Kim D, Zeng MY, Núñez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 2017, 49: e339.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Quigley EMM. Primary biliary cirrhosis and the microbiome. Semin Liver Dis 2016, 36: 349–353.

    CAS  PubMed  Google Scholar 

  43. Talotta R, Atzeni F, Ditto MC, Gerardi MC, Sarzi-Puttini P. The microbiome in connective tissue diseases and vasculitides: an updated narrative review. J Immunol Res 2017, 2017: 6836498.

    PubMed  PubMed Central  Google Scholar 

  44. Yacoub R, Jacob A, Wlaschin J, McGregor M, Quigg RJ, Alexander JJ. Lupus: The microbiome angle. Immunobiology 2018, 223: 460–465.

    CAS  PubMed  Google Scholar 

  45. Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, et al. The microbiota, immunoregulation, and mental health: implications for public health. Curr Environ Health Rep 2016, 3: 270–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beveren NJM, et al. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol 2011, 14: 746–755.

    CAS  PubMed  Google Scholar 

  47. de Araujo EG, da Silva GM, Dos Santos AA. Neuronal cell survival: the role of interleukins. Ann N Y Acad Sci 2009, 1153: 57–64.

    PubMed  Google Scholar 

  48. Gecse K, Róka R, Séra T, Rosztóczy A, Annaházi A, Izbéki F, et al. Leaky gut in patients with diarrhea-predominant irritable bowel syndrome and inactive ulcerative colitis. Digestion 2012, 85: 40–46.

    PubMed  Google Scholar 

  49. Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour: Implications for psychiatry. Curr Opin Clin Nutr Metabol Care 2015, 18: 552–558.

    Google Scholar 

  50. Severance EG, Alaedini A, Yang S, Halling M, Gressitt KL, Stallings CR, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res 2012, 138: 48–53.

    PubMed  PubMed Central  Google Scholar 

  51. Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophrenia 2016, 2: 16018.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res 2013, 148: 130–137.

    PubMed  PubMed Central  Google Scholar 

  53. Jang HM, Lee HJ, Jang SE, Han MJ, Kim DH. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol 2018, 11: 1386–1397.

    CAS  PubMed  Google Scholar 

  54. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 2016, 6: 30028.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017, 551: 585–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J Neurosci 2016, 36: 7428–7440.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma L, Demin KA, Kolesnikova TO, Khatsko SL, Zhu X, Yuan X, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov 2017, 12: 995–1009.

    CAS  PubMed  Google Scholar 

  58. Wong M-L, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry 2016, 21: 797–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 2014, 20: 509–518.

    PubMed  Google Scholar 

  60. Kuperman AA, Koren O. Antibiotic use during pregnancy: how bad is it? BMC Med 2016, 14: 91.

    PubMed  PubMed Central  Google Scholar 

  61. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 2018, 6: 196.

    PubMed  PubMed Central  Google Scholar 

  62. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 2014, 26: 98–107.

    CAS  PubMed  Google Scholar 

  63. Monroe JM, Buckley PF, Miller BJ. Meta-analysis of anti-Toxoplasma gondii IgM antibodies in acute psychosis. Schizophr Bull 2015, 41: 989–998.

    PubMed  Google Scholar 

  64. Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, et al. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res 2012, 136: 128–136.

    PubMed  Google Scholar 

  65. Meeraus WH, Petersen I, Gilbert R. Association between antibiotic prescribing in pregnancy and cerebral palsy or epilepsy in children born at term: a cohort study using the health improvement network. PLoS One 2015, 10: e0122034.

    PubMed  PubMed Central  Google Scholar 

  66. Kenyon S, Pike K, Jones DR, Brocklehurst P, Marlow N, Salt A, et al. Childhood outcomes after prescription of antibiotics to pregnant women with preterm rupture of the membranes: 7-year follow-up of the ORACLE I trial. Lancet 2008, 372: 1310–1318.

    CAS  PubMed  Google Scholar 

  67. Tochitani S, Ikeno T, Ito T, Sakurai A, Yamauchi T, Matsuzaki H. Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behavior. PLoS One 2016, 11: e0138293.

    PubMed  PubMed Central  Google Scholar 

  68. Degroote S, Hunting DJ, Baccarelli AA, Takser L. Maternal gut and fetal brain connection: Increased anxiety and reduced social interactions in Wistar rat offspring following peri-conceptional antibiotic exposure. Prog Neuropsychopharmacol Biol Psychiatry 2016, 71: 76–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 2016, 165: 1762–1775.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pendyala G, Chou S, Jung Y, Coiro P, Spartz E, Padmashri R, et al. Maternal immune activation causes behavioral impairments and altered cerebellar cytokine and synaptic protein expression. Neuropsychopharmacology 2017, 42: 1435–1446.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jašarević E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology 2015, 156: 3265–3276.

    PubMed  PubMed Central  Google Scholar 

  72. Gur TL, Palkar AV, Rajasekera T, Allen J, Niraula A, Godbout J, et al. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav Brain Res 2019, 359: 886–894.

    PubMed  Google Scholar 

  73. Humann J, Mann B, Gao G, Moresco P, Ramahi J, Loh LN, et al. Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe 2016, 19: 388–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Foley KA, Ossenkopp KP, Kavaliers M, Macfabe DF. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS One 2014, 9: e87072.

    PubMed  PubMed Central  Google Scholar 

  75. Barrett E, Guinane CM, Ryan CA, Dempsey EM, Murphy BP, O’Toole PW, et al. Microbiota diversity and stability of the preterm neonatal ileum and colon of two infants. Microbiologyopen 2013, 2: 215–225.

    PubMed  PubMed Central  Google Scholar 

  76. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 2012, 69: E1-8.

    PubMed  Google Scholar 

  77. Quigley MA, Hockley C, Carson C, Kelly Y, Renfrew MJ, Sacker A. Breastfeeding is associated with improved child cognitive development: a population-based cohort study. J Pediatr 2012, 160: 25–32.

    PubMed  Google Scholar 

  78. O’Neill SM, Curran EA, Dalman C, Kenny LC, Kearney PM, Clarke G, et al. Birth by caesarean section and the risk of adult psychosis: a population-based cohort study. Schizophr Bull 2016, 42: 633–641.

    PubMed  Google Scholar 

  79. Fond G, Bulzacka E, Boyer L, Llorca PM, Godin O, Brunel L, et al. Birth by cesarean section and schizophrenia: results from the multicenter FACE-SZ data-set. Eur Arch Psychiatry Clin Neurosci 2017, 267: 587–594.

    CAS  PubMed  Google Scholar 

  80. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010, 107: 11971–11975.

    PubMed  PubMed Central  Google Scholar 

  81. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011, 60: 307–317.

    PubMed  Google Scholar 

  82. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry 2014, 19: 146–148.

    CAS  PubMed  Google Scholar 

  83. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011, 23: 255–264, e119.

    Google Scholar 

  84. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011, 141: 599–609, 609.e1–3.

    Google Scholar 

  85. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 2015, 48: 165–173.

    CAS  PubMed  Google Scholar 

  86. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol (Lond) 2004, 558: 263–275.

    CAS  Google Scholar 

  87. He Y, Kosciolek T, Tang J, Zhou Y, Li Z, Ma X, et al. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur Psychiatry 2018, 53: 37–45.

    PubMed  Google Scholar 

  88. Schwarz E, Maukonen J, Hyytiäinen T, Kieseppä T, Orešič M, Sabunciyan S, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 2018, 192: 398–403.

    PubMed  Google Scholar 

  89. Yuan X, Zhang P, Wang Y, Liu Y, Li X, Kumar BU, et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res 2018, 201: 299–306.

    PubMed  Google Scholar 

  90. Pełka-Wysiecka J, Kaczmarczyk M, Bąba-Kubiś A, Liśkiewicz P, Wroński M, Skonieczna-Żydecka K, et al. Analysis of gut microbiota and their metabolic potential in patients with schizophrenia treated with olanzapine: results from a six-week observational prospective cohort study. J Clin Med 2019, 8: 1605.

    PubMed Central  Google Scholar 

  91. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res 2018, 197: 470–477.

    PubMed  Google Scholar 

  92. Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 2019, 5: eaau8317.

  93. Xu R, Wu B, Liang J, He F, Gu W, Li K, et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun 2020, 85: 120-127.

    CAS  PubMed  Google Scholar 

  94. Nguyen TT, Kosciolek T, Maldonado Y, Daly RE, Martin AS, McDonald D, et al. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res 2019, 204: 23–29.

    PubMed  Google Scholar 

  95. Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull 2015, 41: 1153–1161.

    PubMed  PubMed Central  Google Scholar 

  96. Castro-Nallar E, Bendall ML, Pérez-Losada M. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 2015, 3: e1140.

    PubMed  PubMed Central  Google Scholar 

  97. Torrey EF, Bartko JJ, Lun Z-R, Yolken RH. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr Bull 2007, 33: 729–736.

    PubMed  Google Scholar 

  98. Severance EG, Kannan G, Gressitt KL, Xiao J, Alaedini A, Pletnikov MV, et al. Anti-gluten immune response following Toxoplasma gondii infection in mice. PLoS ONE 2012, 7: e50991.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Houenou J, d’Albis M-A, Daban C, Hamdani N, Delavest M, Lepine JP, et al. Cytomegalovirus seropositivity and serointensity are associated with hippocampal volume and verbal memory in schizophrenia and bipolar disorder. Prog Neuro-Psychopharmaco Biol Psychiatry 2014, 48: 142–148.

    CAS  Google Scholar 

  100. Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res 2018, 99: 50–61.

    PubMed  PubMed Central  Google Scholar 

  101. Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry 2019. https://doi.org/10.1038/s41380-019-0475-4.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen M, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002, 35: S6–S16.

    PubMed  Google Scholar 

  103. Parracho HMRT, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005, 54: 987–991.

    PubMed  Google Scholar 

  104. Angelis M, Piccolo M, Vannini L, Siragusa S, Giacomo A, Serrazzanetti D, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 2013, 8. https://doi.org/10.1371/journal.pone.0076993.

  105. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism - comparisons to typical children and correlation with autism severity. BMC Gastroenterol 2011, 11: 22–22.

    PubMed  PubMed Central  Google Scholar 

  106. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 2015, 138: 179–187.

    CAS  PubMed  Google Scholar 

  107. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5: 24–24.

    PubMed  PubMed Central  Google Scholar 

  108. Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 2012, 3. https://doi.org/10.1128/mbio.00261-11.

  109. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism 2013, 4: 42.

  110. Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environ Res 2019, 171: 501–509.

    CAS  PubMed  Google Scholar 

  111. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010, 16: 444–453.

    CAS  PubMed  Google Scholar 

  112. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013, 8: e68322.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res 2012, 5: 419–427.

    PubMed  Google Scholar 

  114. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155: 1451–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Theije CGM de, Wopereis H, Ramadan M, Eijndthoven T van, Lambert J, Knol J, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 2014, 37: 197–206.

    PubMed  Google Scholar 

  116. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019, 101: 246–259.e6.

    Google Scholar 

  117. Chen K, Luan X, Liu Q, Wang J, Chang X, Snijders AM, et al. Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 2019, 25: 537–552.e8.

    Google Scholar 

  118. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014, 26: 1155–1162.

    CAS  PubMed  Google Scholar 

  119. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015, 48: 186–194.

    PubMed  Google Scholar 

  120. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016, 21: 786–796.

    CAS  PubMed  Google Scholar 

  121. Yu M, Jia H, Zhou C, Yang Y, Zhao Y, Yang M, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 2017, 138: 231–239.

    CAS  PubMed  Google Scholar 

  122. Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res 2017, 87: 23–29.

    PubMed  Google Scholar 

  123. Hu S, Li A, Huang T, Lai J, Li J, Sublette ME, et al. Gut microbiota changes in patients with bipolar depression. Adv Sci (Weinh) 2019, 6: 1900752.

    Google Scholar 

  124. McIntyre RS, Subramaniapillai M, Shekotikhina M, Carmona NE, Lee Y, Mansur RB, et al. Characterizing the gut microbiota in adults with bipolar disorder: a pilot study. Nutr Neurosci 2019. https://doi.org/10.1080/1028415x.2019.1612555.

    Article  PubMed  Google Scholar 

  125. Painold A, Mörkl S, Kashofer K, Halwachs B, Dalkner N, Bengesser S, et al. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord 2019, 21: 40–49.

    CAS  PubMed  Google Scholar 

  126. Rong H, Xie XH, Zhao J, Lai WT, Wang MB, Xu D, et al. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J Psychiatr Res 2019, 113: 90–99.

    PubMed  Google Scholar 

  127. Zijlmans MAC, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53: 233–245.

    PubMed  Google Scholar 

  128. Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 1999, 35: 146–155.

    CAS  PubMed  Google Scholar 

  129. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015, 6: 7735.

    PubMed  Google Scholar 

  130. Pyndt Jørgensen B, Winther G, Kihl P, Nielsen DS, Wegener G, Hansen AK, et al. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice. Acta Neuropsychiatr 2015, 27: 307–311.

    PubMed  Google Scholar 

  131. Hemmings SMJ, Malan-Müller S, van den Heuvel LL, Demmitt BA, Stanislawski MA, Smith DG, et al. The microbiome in posttraumatic stress disorder and trauma-exposed controls: An exploratory study. Psychosom Med 2017, 79: 936–946.

    PubMed  PubMed Central  Google Scholar 

  132. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014, 42: 207–217.

    CAS  PubMed  Google Scholar 

  133. Bambury A, Sandhu K, Cryan JF, Dinan TG. Finding the needle in the haystack: systematic identification of psychobiotics. Br J Pharmacol 2018, 175: 4430–4438.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013, 74: 720–726.

    CAS  PubMed  Google Scholar 

  135. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012, 10: 735–742.

    CAS  PubMed  Google Scholar 

  136. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res 2008, 43: 164–174.

    PubMed  Google Scholar 

  137. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011, 108: 16050–16055.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 1998, 65: 63–68.

    CAS  PubMed  Google Scholar 

  139. Bangsgaard Bendtsen KM, Krych L, Sørensen DB, Pang W, Nielsen DS, Josefsen K, et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One 2012, 7: e46231.

    PubMed  PubMed Central  Google Scholar 

  140. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170: 1179–1188.

    CAS  PubMed  Google Scholar 

  141. McKernan DP, Fitzgerald P, Dinan TG, Cryan JF. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 2010, 22: 1029–1035, e268.

    Google Scholar 

  142. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2011, 105: 755–764.

    CAS  PubMed  Google Scholar 

  143. Dapoigny M, Piche T, Ducrotte P, Lunaud B, Cardot J-M, Bernalier-Donadille A. Efficacy and safety profile of LCR35 complete freeze-dried culture in irritable bowel syndrome: a randomized, double-blind study. World J Gastroenterol 2012, 18: 2067–2075.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 2009, 1: 6.

    PubMed  PubMed Central  Google Scholar 

  145. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 2007, 61: 355–361.

    CAS  PubMed  Google Scholar 

  146. Romijn AR, Rucklidge JJ. Systematic review of evidence to support the theory of psychobiotics. Nutr Rev 2015, 73: 675–693.

    PubMed  Google Scholar 

  147. Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CLG, Schweinfurth LAB, et al. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Prim Care Companion CNS Disord 2014, 16. https://doi.org/10.4088/pcc.13m01579.

  148. Dickerson F, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C, et al. Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disord 2018, 20: 614–621.

    CAS  PubMed  Google Scholar 

  149. Keller WR, Kum LM, Wehring HJ, Koola MM, Buchanan RW, Kelly DL. A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol (Oxford) 2013, 27: 337–342.

    CAS  Google Scholar 

  150. Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry 2012, 73: 414–419.

    CAS  PubMed  Google Scholar 

  151. Solmi M, Veronese N, Thapa N, Facchini S, Stubbs B, Fornaro M, et al. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr 2017, 22: 415–426.

    PubMed  Google Scholar 

  152. Nemani K, Hosseini Ghomi R, McCormick B, Fan X. Schizophrenia and the gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2015, 56: 155–160.

    CAS  PubMed  Google Scholar 

  153. Kalaydjian AE, Eaton W, Cascella N, Fasano A. The gluten connection: the association between schizophrenia and celiac disease. Acta Psychiatr Scand 2006, 113: 82–90.

    CAS  PubMed  Google Scholar 

  154. Citrome L, Holt RIG, Walker DJ, Hoffmann VP. Weight gain and changes in metabolic variables following olanzapine treatment in schizophrenia and bipolar disorder. Clin Drug Investig 2011, 31: 455–482.

    CAS  PubMed  Google Scholar 

  155. Birkenaes AB, Birkeland KI, Engh JA, Faerden A, Jonsdottir H, Ringen PA, et al. Dyslipidemia independent of body mass in antipsychotic-treated patients under real-life conditions. J Clin Psychopharmacol 2008, 28: 132–137.

    CAS  PubMed  Google Scholar 

  156. Chintoh AF, Mann SW, Lam TKT, Giacca A, Remington G. Insulin resistance following continuous, chronic olanzapine treatment: an animal model. Schizophr Res 2008, 104: 23–30.

    PubMed  Google Scholar 

  157. Perez-Iglesias R, Mata I, Pelayo-Teran JM, Amado JA, Garcia-Unzueta MT, Berja A, et al. Glucose and lipid disturbances after 1 year of antipsychotic treatment in a drug-naïve population. Schizophr Res 2009, 107: 115–121.

    PubMed  Google Scholar 

  158. Patel JK, Buckley PF, Woolson S, Hamer RM, McEvoy JP, Perkins DO, et al. Metabolic profiles of second-generation antipsychotics in early psychosis: findings from the CAFE study. Schizophr Res 2009, 111: 9–16.

    PubMed  Google Scholar 

  159. Cohen D, Correll CU. Second-generation antipsychotic-associated diabetes mellitus and diabetic ketoacidosis: mechanisms, predictors, and screening need. J Clin Psychiatry 2009, 70: 765–766.

    CAS  PubMed  Google Scholar 

  160. Farwell WR, Stump TE, Wang J, Tafesse E, L’Italien G, Tierney WM. Weight gain and new onset diabetes associated with olanzapine and risperidone. J Gen Intern Med 2004, 19: 1200–1205.

    PubMed  PubMed Central  Google Scholar 

  161. Davey KJ, O’Mahony SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, et al. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 2012, 221: 155–169.

    CAS  Google Scholar 

  162. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444: 1027–1031.

    PubMed  Google Scholar 

  163. Davey KJ, Cotter PD, O’Sullivan O, Crispie F, Dinan TG, Cryan JF, et al. Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 2013, 3: e309.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bahr SM, Weidemann BJ, Castro AN, Walsh JW, deLeon O, Burnett CML, et al. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine 2015, 2: 1725–1734.

    PubMed  PubMed Central  Google Scholar 

  165. Bahr SM, Tyler BC, Wooldridge N, Butcher BD, Burns TL, Teesch LM, et al. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Transl Psychiatry 2015, 5: e652.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555: 623–628.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was supported by the National Natural Science Foundation of China (81871056). We would like to thank Okko Alitalo, MSc, from the Laboratory of Neurotherapeutics of the Faculty of Pharmacy at the University of Helsinki for designing figure 2. We would also like to thank Dr. Henriette Raventós and her team at the Cellular and Molecular Biology Research Centre of the University of Costa Rica for their corrections and comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying He.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouabbou, S., He, Y., Butler, K. et al. Inflammation in Mental Disorders: Is the Microbiota the Missing Link?. Neurosci. Bull. 36, 1071–1084 (2020). https://doi.org/10.1007/s12264-020-00535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00535-1

Keywords

Navigation