Skip to main content

Advertisement

Log in

Purines: From Diagnostic Biomarkers to Therapeutic Agents in Brain Injury

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The purines constitute a family of inter-related compounds that serve a broad range of important intracellular and extracellular biological functions. In particular, adenosine triphosphate (ATP) and its metabolite and precursor, adenosine, regulate a wide variety of cellular and systems-level physiological processes extending from ATP acting as the cellular energy currency, to the adenosine arising from the depletion of cellular ATP and responding to reduce energy demand and hence to preserve ATP during times of metabolic stress. This inter-relationship provides opportunities for both the diagnosis of energy depletion during conditions such as stroke, and the replenishment of ATP after such events. In this review we address these opportunities and the broad potential of purines as diagnostics and restorative agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ponnamperuma C, Sagan C, Mariner R. Synthesis of adenosine triphosphate under possible primitive earth conditions. Nature 1963, 199: 222–226.

    CAS  PubMed  Google Scholar 

  2. Nicholls DG, Ferguson SJ. Bioenergetics 4. Academic Press, 2013.

  3. Burnstock G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 2012, 34: 218–225.

    CAS  PubMed  Google Scholar 

  4. North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci 2016, 371.

  5. Habermacher C, Dunning K, Chataigneau T, Grutter T. Molecular structure and function of P2X receptors. Neuropharmacology 2016, 104: 18–30.

    CAS  PubMed  Google Scholar 

  6. von Kugelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2016, 104: 50–61.

    Google Scholar 

  7. Abbracchio MP, Boeynaems JM, Boyer JL, Burnstock G, Ceruti S, Fumagalli M, et al. P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE 2019, 2019.

  8. Jacobson KA, Paoletta S, Katritch V, Wu B, Gao ZG, Zhao Q, et al. Nucleotides acting at P2Y receptors: Connecting structure and function. Mol Pharmacol 2015, 88: 220–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gundersen V, Storm-Mathisen J, Bergersen LH. Neuroglial transmission. Physiol Rev 2015, 95: 695–726.

    CAS  PubMed  Google Scholar 

  10. Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 2019, 205: 16–24.

    CAS  PubMed  Google Scholar 

  11. Zimmermann H, Zebisch M, Strater N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012, 8: 437–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev 2018, 98: 1591–1625.

    CAS  PubMed  Google Scholar 

  13. Young JD, Yao SY, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 2013, 34: 529–547.

    CAS  PubMed  Google Scholar 

  14. Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013, 34: 413–435.

    CAS  PubMed  Google Scholar 

  15. Nalecz KA. Solute carriers in the blood-brain barier: Safety in abundance. Neurochem Res 2017, 42: 795–809.

    CAS  PubMed  Google Scholar 

  16. Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 2001, 79: 463–484.

    CAS  PubMed  Google Scholar 

  17. Nascimento FP, Macedo-Junior SJ, Pamplona FA, Luiz-Cerutti M, Cordova MM, Constantino L, et al. Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 2015, 51: 1368–1378.

    CAS  PubMed  Google Scholar 

  18. Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal 2016, 28: 552–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Doyle C, Cristofaro V, Sack BS, Lukianov SN, Schafer M, Chung YG, et al. Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A2B pathway. Sci Rep 2017, 7: 44416.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Deganutti G, Welihinda A, Moro S. Comparison of the human A2A adenosine receptor recognition by adenosine and inosine: New insight from supervised molecular dynamics simulations. ChemMedChem 2017, 12: 1319–1326.

    CAS  PubMed  Google Scholar 

  21. Xiao C, Liu N, Jacobson KA, Gavrilova O, Reitman ML. Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol 2019, 17: e3000161.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, et al. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 2006, 142: 125–137.

    CAS  PubMed  Google Scholar 

  23. Etherington LA, Patterson GE, Meechan L, Boison D, Irving AJ, Dale N, et al. Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 2009, 56: 429–437.

    CAS  PubMed  Google Scholar 

  24. Sacerdote MG, Szostak JW. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc Natl Acad Sci U S A 2005, 102: 6004–6008.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei C, Pohorille A. Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes: implications to the origins of life. Astrobiology 2013, 13: 177–188.

    CAS  PubMed  Google Scholar 

  26. Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, et al. Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci U S A 2002, 99: 8573–8578.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorzalka S, Vittori S, Volpini R, Cristalli G, von Kugelgen I, Muller CE. Evidence for the functional expression and pharmacological characterization of adenine receptors in native cells and tissues. Mol Pharmacol 2005, 67: 955–964.

    CAS  PubMed  Google Scholar 

  28. Kamatani N, Carson DA. Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts. Biochim Biophys Acta 1981, 675: 344–350.

    CAS  PubMed  Google Scholar 

  29. Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5’-methylthioadenosine. IUBMB Life 2009, 61: 1132–1142.

    CAS  PubMed  Google Scholar 

  30. Cader MZ, de Almeida Rodrigues RP, West JA, Sewell GW, Md-Ibrahim MN, Reikine S, et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 2020, 180: 278–295 e223.

    Google Scholar 

  31. Mayor D, Tymianski M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 2018, 134: 178–188.

    CAS  PubMed  Google Scholar 

  32. Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 2018, 134: 189–207.

    CAS  PubMed  Google Scholar 

  33. Gavaret M, Marchi A, Lefaucheur JP. Clinical neurophysiology of stroke. Handb Clin Neurol 2019, 161: 109–119.

    PubMed  Google Scholar 

  34. Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008, 55: 363–389.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, Terbrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2012, 11: 942–950.

    CAS  PubMed  Google Scholar 

  36. Ballarin B, Tymianski M. Discovery and development of NA-1 for the treatment of acute ischemic stroke. Acta Pharmacol Sin 2018, 39: 661–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hill MD, Goyal M, Menon BK, Nogueira RG, McTaggart RA, Demchuk AM, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 2020, 395: 878–887.

    CAS  PubMed  Google Scholar 

  38. Hardie DG. Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface 2018, 15.

  39. Camici M, Allegrini S, Tozzi MG. Interplay between adenylate metabolizing enzymes and AMP-activated protein kinase. FEBS J 2018, 285: 3337–3352.

    CAS  PubMed  Google Scholar 

  40. Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, et al. AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 2004, 88: 1272–1282.

    CAS  PubMed  Google Scholar 

  41. Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, et al. AMPK: Potential therapeutic target for ischemic stroke. Theranostics 2018, 8: 4535–4551.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Newby AC. Adenosine and the concept of retaliatory metabolites. Trand Biochem Sci 1984, 9: 42–44.

    CAS  Google Scholar 

  43. Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2009, 7: 160–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001, 21: 1133–1145.

    CAS  PubMed  Google Scholar 

  45. Matsumoto K, Graf R, Rosner G, Shimada N, Heiss WD. Flow thresholds for extracellular purine catabolite elevation in cat focal ischemia. Brain Res 1992, 579: 309–314.

    CAS  PubMed  Google Scholar 

  46. Frenguelli BG, Llaudet E, Dale N. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J Neurochem 2003, 86: 1506–1515.

    CAS  PubMed  Google Scholar 

  47. Frenguelli BG, Wigmore G, Llaudet E, Dale N. Temporal and mechanistic dissociation of ATP and adenosine release during ischemia in the mammalian hippocampus. J Neurochem 2007, 101: 1400–1413.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B, et al. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao’s legacy. J Cereb Blood Flow Metab 2017, 37: 1571–1594.

    PubMed  Google Scholar 

  49. Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra EC, et al. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 2007, 1168: 129–138.

    CAS  PubMed  Google Scholar 

  50. Lindquist BE, Shuttleworth CW. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo. J Cereb Blood Flow Metab 2014, 34: 1779–1790.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindquist BE, Shuttleworth CW. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices. Neuroscience 2012, 223: 365–376.

    CAS  PubMed  Google Scholar 

  52. de Oliveira RR, Morales-Neto R, Rocco SA, Sforça ML, Polo CC, Tonoli CCC, et al. Adenosine Kinase couples sensing of cellular potassium depletion to purine metabolism. Sci Rep 2018, 8: 11988.

    PubMed  PubMed Central  Google Scholar 

  53. Pearson T, Damian K, Lynas R, Frenguelli BG. Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. J Neurochem 2006, 97: 1357–1368.

    CAS  PubMed  Google Scholar 

  54. Kalaria RN, Harik SI. Nucleoside transporter of cerebral microvessels and choroid plexus. J Neurochem 1986, 47: 1849–1856.

    CAS  PubMed  Google Scholar 

  55. Kalaria RN, Harik SI. Adenosine receptors and the nucleoside transporter in human brain vasculature. J Cereb Blood Flow Metab 1988, 8: 32–39.

    CAS  PubMed  Google Scholar 

  56. Isakovic AJ, Abbott NJ, Redzic ZB. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. J Neurochem 2004, 90: 272–286.

    CAS  PubMed  Google Scholar 

  57. Dale N, Tian F, Sagoo R, Phillips N, Imray C, Roffe C. Point-of-care measurements reveal release of purines into venous blood of stroke patients. Purinergic Signal 2019, 15: 237–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tian F, Bibi F, Dale N, Imray CHE. Blood purine measurements as a rapid real-time indicator of reversible brain ischaemia. Purinergic Signal 2017, 13: 521–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Krenitsky TA, Spector T, Hall WW. Xanthine oxidase from human liver: purification and characterization. Arch Biochem Biophys 1986, 247: 108–119.

    CAS  PubMed  Google Scholar 

  60. Frenguelli BG. The purine salvage pathway and the restoration of cerebral ATP: Implications for brain slice physiology and brain injury. Neurochem Res 2019, 44: 661–675.

    CAS  PubMed  Google Scholar 

  61. Fisher O, Benson RA, Imray CH. The clinical application of purine nucleosides as biomarkers of tissue Ischemia and hypoxia in humans in vivo. Biomark Med 2019, 13: 953–965.

    CAS  PubMed  Google Scholar 

  62. Plagemann PG, Wohlhueter RM, Kraupp M. Adenosine uptake, transport, and metabolism in human erythrocytes. J Cell Physiol 1985, 125: 330–336.

    CAS  PubMed  Google Scholar 

  63. Klabunde RE, Althouse DG. Adenosine metabolism in dog whole blood: effects of dipyridamole. Life Sci 1981, 28: 2631–2641.

    CAS  PubMed  Google Scholar 

  64. Klabunde RE. Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 1983, 93: 21–26.

    CAS  PubMed  Google Scholar 

  65. Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol 1989, 256: C799–806.

    CAS  PubMed  Google Scholar 

  66. Ipata PL, Camici M, Micheli V, Tozz MG. Metabolic network of nucleosides in the brain. Curr Top Med Chem 2011, 11: 909–922.

    CAS  PubMed  Google Scholar 

  67. Ipata PL, Pesi R. Nucleoside recycling in the brain and the nucleosidome: a complex metabolic and molecular cross-talk between the extracellular nucleotide cascade system and the intracellular nucleoside salvage. Metabolomics 2015, 12: 22.

    Google Scholar 

  68. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 2004, 447: 735–743.

    CAS  PubMed  Google Scholar 

  69. Dale N. Delayed production of adenosine underlies temporal modulation of swimming in frog embryo. J Physiol 1998, 511: 265–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Llaudet E, Botting NP, Crayston JA, Dale N. A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 2003, 18: 43–52.

    CAS  PubMed  Google Scholar 

  71. Tian F, Llaudet E, Dale N. Ruthenium purple-mediated microelectrode biosensors based on sol-gel film. Anal Chem 2007, 79: 6760–6766.

    CAS  PubMed  Google Scholar 

  72. DaCosta M, Tadi P, Surowiec SM. Carotid Endarterectomy. StatPearls 2020.

  73. Martin AJ, Dale N, Imray CHE, Roffe C, Smith CJ, Tian F, et al. The association between early neurological deterioration and whole blood purine concentration during acute stroke. Biomark Res 2019, 7: 7.

    PubMed  PubMed Central  Google Scholar 

  74. Fu R, Ceballos-Picot I, Torres RJ, Larovere LE, Yamada Y, Nguyen KV, et al. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder. Brain 2014, 137: 1282–1303.

    PubMed  Google Scholar 

  75. Thomas J. The composition of isolated cerebral tissue; purines. Biochem J 1957, 66: 655–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Newman GC, Hospod FE, Trowbridge SD, Motwani S, Liu Y. Restoring adenine nucleotides in a brain slice model of cerebral reperfusion. J Cereb Blood Flow Metab 1998, 18: 675–685.

    CAS  PubMed  Google Scholar 

  77. Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 1929, 68: 213–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hess JR. An update on solutions for red cell storage. Vox Sang 2006, 91: 13–19.

    CAS  PubMed  Google Scholar 

  79. Zimmer HG. Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats. Cardiovasc Drugs Ther 1998, 12 Suppl 2: 179–187.

    CAS  PubMed  Google Scholar 

  80. Zimmer HG, Ibel H, Steinkopff G, Korb G. Reduction of the isoproterenol-induced alterations in cardiac adenine nucleotides and morphology by ribose. Science 1980, 207: 319–321.

    CAS  PubMed  Google Scholar 

  81. Zimmer HG. Normalization of depressed heart function in rats by ribose. Science 1983, 220: 81–82.

    CAS  PubMed  Google Scholar 

  82. Zimmer HG, Ibel H, Suchner U, Schad H. Ribose intervention in the cardiac pentose phosphate pathway is not species-specific. Science 1984, 223: 712–714.

    CAS  PubMed  Google Scholar 

  83. Ward HB, St Cyr JA, Cogordan JA, Alyono D, Bianco RW, Kriett JM, et al. Recovery of adenine nucleotide levels after global myocardial ischemia in dogs. Surgery 1984, 96: 248–255.

    CAS  PubMed  Google Scholar 

  84. Ward HB, Wang T, Einzig S, Bianco RW, Foker JE. Prevention of ATP catabolism during myocardial ischemia: a preliminary report. J Surg Res 1983, 34: 292–297.

    CAS  PubMed  Google Scholar 

  85. Bollee G, Harambat J, Bensman A, Knebelmann B, Daudon M, Ceballos-Picot I. Adenine phosphoribosyltransferase deficiency. Clin J Am Soc Nephrol 2012, 7: 1521–1527.

    CAS  PubMed  Google Scholar 

  86. Pierce JD, Mahoney DE, Hiebert JB, Thimmesch AR, Diaz FJ, Smith C, et al. Study protocol, randomized controlled trial: reducing symptom burden in patients with heart failure with preserved ejection fraction using ubiquinol and/or D-ribose. BMC Cardiovasc Disord 2018, 18: 57.

    PubMed  PubMed Central  Google Scholar 

  87. Pearson T, Nuritova F, Caldwell D, Dale N, Frenguelli BG. A depletable pool of adenosine in area CA1 of the rat hippocampus. J Neurosci 2001, 21: 2298–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dux E, Fastbom J, Ungerstedt U, Rudolphi K, Fredholm BB. Protective effect of adenosine and a novel xanthine derivative propentofylline on the cell damage after bilateral carotid occlusion in the gerbil hippocampus. Brain Res 1990, 516: 248–256.

    CAS  PubMed  Google Scholar 

  89. Valtysson J, Persson L, Hillered L. Extracellular ischaemia markers in repeated global ischaemia and secondary hypoxaemia monitored by microdialysis in rat brain. Acta Neurochir (Wien) 1998, 140: 387–395.

    CAS  Google Scholar 

  90. zur Nedden S, Hawley SA, Pentland N, Hardie DG, Doney AS, Frenguelli BG. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors. J Neurosci 2011, 31: 6221–6234.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hossmann KA. Cerebral ischemia: models, methods and outcomes. Neuropharmacology 2008, 55: 257–270.

    CAS  PubMed  Google Scholar 

  92. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010, 133: 3232–3242.

    PubMed  Google Scholar 

  93. Hall J, Frenguelli BG. The combination of ribose and adenine promotes adenosine release and attenuates the intensity and frequency of epileptiform activity in hippocampal slices: Evidence for the rapid depletion of cellular ATP during electrographic seizures. J Neurochem 2018, 147: 178–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. zur Nedden S, Doney AS, Frenguelli BG. Modulation of intracellular ATP determines adenosine release and functional outcome in response to metabolic stress in rat hippocampal slices and cerebellar granule cells. J Neurochem 2014, 128: 111–124.

    CAS  PubMed  Google Scholar 

  95. Faller KM, Leach J, Johnston P, Holmes WM, Macrae IM, Frenguelli BG. Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat. Brain Neurosci Adv 2017, 1: 2398212817717112.

    PubMed  PubMed Central  Google Scholar 

  96. Annink KV, Franz AR, Derks JB, Rudiger M, Bel FV, Benders M. Allopurinol: Old drug, new indication in neonates? Curr Pharm Des 2017, 23: 5935–5942.

    CAS  PubMed  Google Scholar 

  97. Solevag AL, Schmolzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med 2019, 142: 113–122.

    CAS  PubMed  Google Scholar 

  98. Gross M, Zöllner N. Serum levels of glucose, insulin, and C-peptide during long-term D-ribose administration in man. Klin Wochenschr 1991, 69: 31–36.

    CAS  PubMed  Google Scholar 

  99. Bartlett GR. Metabolism by man of intravenously administered adenine. Transfusion 1977, 17: 367–373.

    CAS  PubMed  Google Scholar 

  100. Roth GJ, Moore GL, Kline WE, Poskitt TR. The renal effect of intravenous adenine in humans. Transfusion 1975, 15: 116–123.

    CAS  PubMed  Google Scholar 

  101. Edvardsson VO, Runolfsdottir HL, Thorsteinsdottir UA, Sch Agustsdottir IM, Oddsdottir GS, Eiriksson F, et al. Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with APRT deficiency: A clinical trial. Eur J Intern Med 2018, 48: 75–79.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the following organizations for funding: Research into Ageing, The Royal Society, The Wellcome Trust, BBSRC, Rosetrees Trust, and The University of Warwick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. Frenguelli.

Ethics declarations

Conflicts of interest

Nicholas Dale is the founder, an Executive Director, and the Chief Scientific Officer of Sarissa Biomedical, the company manufacturing the research and diagnostic purine biosensors described in the review. Bruno Frenguelli is a Non-Executive Director of Sarissa Biomedical. Dale and Frenguelli are either employed by Sarissa and/or have shares in the company.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frenguelli, B.G., Dale, N. Purines: From Diagnostic Biomarkers to Therapeutic Agents in Brain Injury. Neurosci. Bull. 36, 1315–1326 (2020). https://doi.org/10.1007/s12264-020-00529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00529-z

Keywords

Navigation