Emerging Molecular Targets for the Management of Cancer Pain

This is a preview of subscription content, access via your institution.


  1. 1.

    Sindhi V, Erdek M. Interventional treatments for metastatic bone cancer pain. Pain Manag 2019, 9: 307–315.

    Article  Google Scholar 

  2. 2.

    Scarborough BM, Smith CB. Optimal pain management for patients with cancer in the modern era. CA Cancer J Clin 2018, 68: 182–196.

    Article  Google Scholar 

  3. 3.

    Guo QH, Tong QH, Lu N, Cao H, Yang L, Zhang YQ. Proteomic analysis of the hippocampus in mouse models of trigeminal neuralgia and inescapable shock-induced depression. Neurosci Bull 2018, 34: 74–84.

    Article  CAS  Google Scholar 

  4. 4.

    Chen J, Cong X, Zhan X, Zhou Z, Zheng W. Effects of parecoxib on pain threshold and inflammatory factors IL-1beta, IL-6 and TNF- in spinal cord of rats with bone cancer pain. J Coll Physicians Surg Pak 2019, 29: 528–531.

    Article  Google Scholar 

  5. 5.

    Xu M, Ni H, Xu L, Shen H, Deng H, Wang Y, et al. B14 ameliorates bone cancer pain through downregulating spinal interleukin-1beta via suppressing neuron JAK2/STAT3 pathway. Mol Pain 2019, 15: 1744806919886498.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Liao Y, Xu M. Efficacy and mechanism of action of etanercept in bone cancer pain. Pharmazie 2017, 72: 219–222.

    PubMed  CAS  Google Scholar 

  7. 7.

    Remeniuk B, King T, Sukhtankar D, Nippert A, Li N, Li F, et al. Disease modifying actions of interleukin-6 blockade in a rat model of bone cancer pain. Pain 2018, 159: 684–698.

    Article  CAS  Google Scholar 

  8. 8.

    Al-Mazidi S, Farhat K, Nedjadi T, Chaudhary A, Zin Al-Abdin O, Rabah D, et al. Association of interleukin-6 and other cytokines with self-reported pain in prostate cancer patients receiving chemotherapy. Pain Med 2018, 19: 1058–1066.

    Article  Google Scholar 

  9. 9.

    Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, et al. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep 2019, 29: 2384–2397 e2385.

    Google Scholar 

  10. 10.

    Yang Y, Li H, Li TT, Luo H, Gu XY, Lü N, et al. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J Neurosci 2015, 35: 7950–7963.

    Article  CAS  Google Scholar 

  11. 11.

    Shen W, Hu XM, Liu YN, Han Y, Chen LP, Wang CC, et al. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J Neuroinflammation 2014, 11: 1–14.

    Article  CAS  Google Scholar 

  12. 12.

    Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 2016, 31: 61–71.

    Article  Google Scholar 

  13. 13.

    Ni H, Wang Y, An K, Liu Q, Xu L, Zhu C, et al. Crosstalk between NFκB-dependent astrocytic CXCL1 and neuron CXCR2 plays a role in descending pain facilitation. Neuroinflammation 2019, 16: 1–16.

    Article  CAS  Google Scholar 

  14. 14.

    Guo CH, Bai L, Wu HH, Yang J, Cai GH, Wang X, et al. The analgesic effect of rolipram is associated with the inhibition of the activation of the spinal astrocytic JNK/CCL2 pathway in bone cancer pain. Int J Mol Med 2016, 38: 1433–1442.

    Article  CAS  Google Scholar 

  15. 15.

    Xie RG, Gao YJ, Park CK, Lu N, Luo C, Wang WT, et al. Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: Further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 2018, 34: 13–21.

    Article  CAS  Google Scholar 

  16. 16.

    Appel CK, Scheff NN, Viet CT, Schmidt BL, Heegaard AM. Decitabine attenuates nociceptive behavior in a murine model of bone cancer pain. Pain 2019, 160: 619–631.

    Article  CAS  Google Scholar 

  17. 17.

    Hu XM, Yang W, Du LX, Cui WQ, Mi WL, Mao-Ying QL, et al. Vascular endothelial growth factor A signaling promotes spinal central sensitization and pain-related behaviors in female rats with bone cancer. Anesthesiology 2019, 131: 1125–1147.

    Article  CAS  Google Scholar 

  18. 18.

    Selvaraj D, Gangadharan V, Michalski CW, Kurejova M, Stosser S, Srivastava K, et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 2015, 27: 780–796.

    Article  CAS  Google Scholar 

  19. 19.

    Grenald SA, Doyle TM, Zhang H, Slosky LM, Chen Z, Largent-Milnes TM, et al. Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation. Pain 2017, 158: 1733–1742.

    Article  CAS  Google Scholar 

  20. 20.

    Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, et al. PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat Neurosci 2017 20: 917–926.

    Article  CAS  Google Scholar 

Download references


This insight was supported by the National Natural Science Foundation of China (31420103903 and 31771164), funds from the Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), and funds from ZJLab.

Author information



Corresponding author

Correspondence to Yu-Qiu Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheng, HY., Zhang, YQ. Emerging Molecular Targets for the Management of Cancer Pain. Neurosci. Bull. 36, 1225–1228 (2020). https://doi.org/10.1007/s12264-020-00526-2

Download citation