TASK-3: New Target for Pain-Relief

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Barlass U, Dutta R, Cheema H, George J, Sareen A, Dixit A, et al. Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut 2018, 67: 600–602.

    PubMed  Google Scholar 

  2. 2.

    Bang S, Yoo J, Gong X, Liu D, Han Q, Luo X, et al. Differential inhibition of Nav1.7 and neuropathic pain by hybridoma-produced and recombinant monoclonal antibodies that target Nav1.7: Differential activities of Nav1.7-targeting monoclonal antibodies. Neurosci Bull 2018, 34: 22–41.

    CAS  Article  Google Scholar 

  3. 3.

    Minett MS, Nassar MA, Clark AK, Passmore G, Dickenson AH, Wang F, et al. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun 2012, 3: 791.

    Article  Google Scholar 

  4. 4.

    Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006, 444: 894–898.

    CAS  Article  Google Scholar 

  5. 5.

    Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 2007, 71: 311–319.

    CAS  Article  Google Scholar 

  6. 6.

    Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016, 20: 975–983.

    CAS  Article  Google Scholar 

  7. 7.

    Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, et al. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 2015, 6: 8967.

    CAS  Article  Google Scholar 

  8. 8.

    Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 2001, 21: 7491–7505.

    CAS  Article  Google Scholar 

  9. 9.

    Turner PJ, Buckler KJ. Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J Physiol 2013, 591: 5977–5998.

    CAS  Article  Google Scholar 

  10. 10.

    Rusznak Z, Pocsai K, Kovacs I, Por A, Pal B, Biro T, et al. Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum. Cell Mol Life Sci 2004, 61: 1532–1542.

    CAS  Article  Google Scholar 

  11. 11.

    Gnatenco C, Han J, Snyder AK, Kim D. Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes. Brain Res 2002, 931: 56–67.

    CAS  Article  Google Scholar 

  12. 12.

    Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 2008, 29: 566–575.

    CAS  Article  Google Scholar 

  13. 13.

    Ge F, Mu P, Guo R, Cai L, Liu Z, Dong Y, et al. Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry 2019. doi: https://doi.org/10.1038/s41380-019-0419-z.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yao C, Li Y, Shu S, Yao S, Lynch C, Bayliss DA, et al. TASK channels contribute to neuroprotective action of inhalational anesthetics. Sci Rep 2017, 7: 44203.

    Article  Google Scholar 

  15. 15.

    Gotter AL, Santarelli VP, Doran SM, Tannenbaum PL, Kraus RL, Rosahl TW, et al. TASK-3 as a potential antidepressant target. Brain Res 2011, 1416: 69–79.

    CAS  Article  Google Scholar 

  16. 16.

    Morenilla-Palao C, Luis E, Fernandez-Pena C, Quintero E, Weaver JL, Bayliss DA, et al. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep 2014, 8: 1571–1582.

    CAS  Article  Google Scholar 

  17. 17.

    Cotten JF. TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Anesth Analg 2013, 116: 810–816.

    CAS  Article  Google Scholar 

  18. 18.

    Wright PD, Veale EL, McCoull D, Tickle DC, Large JM, Ococks E, et al. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem Biophys Res Commun 2017, 493: 444–450.

    CAS  Article  Google Scholar 

  19. 19.

    Garcia G, Noriega-Navarro R, Martinez-Rojas VA, Gutierrez-Lara EJ, Oviedo N, Murbartian J. Spinal TASK-1 and TASK-3 modulate inflammatory and neuropathic pain. Eur J Pharmacol 2019, 862: 172631.

    CAS  Article  Google Scholar 

  20. 20.

    Liao P, Qiu Y, Mo Y, Fu J, Song Z, Huang L, et al. Selective activation of TWIK-related acid-sensitive K+ 3 subunit-containing channels is analgesic in rodent models. Sci Transl Med 2019, 11. pii: eaaw8434.

    Article  Google Scholar 

Download references


The authors’ research is supported by the National Key R&D Program of China (2019YFC1709101), The Project First-Class Disciplines Development of Chengdu University of TCM (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), the National Natural Science Foundation of China (81904312 and 81774437), and the Sichuan Science and Technology Program, China (2019YFH0108, 2018HH0123, and 2018SZ0257).

Author information



Corresponding authors

Correspondence to Peter Illes or Yong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, WJ., Ulrich, H., Semyanov, A. et al. TASK-3: New Target for Pain-Relief. Neurosci. Bull. 36, 951–954 (2020). https://doi.org/10.1007/s12264-020-00516-4

Download citation