Microglia Research in the 100th Year Since Its Discovery

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 2019, 179: 1609–1622.

    Article  Google Scholar 

  2. 2.

    Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 2019, 566: 388–392.

    CAS  Article  Google Scholar 

  3. 3.

    Sankowski R, Böttcher C, Masuda T, Geirsdottir L, Sagar, Sindram E, et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosci 2019, 22: 2098–2110.

    CAS  Article  Google Scholar 

  4. 4.

    Tränkner D, Boulet A, Peden E, Focht R, Van Deren D, Capecchi M. A microglia sublineage protects from sex-linked anxiety symptoms and obsessive compulsion. Cell Rep 2019, 29: 791–799.

    Article  Google Scholar 

  5. 5.

    Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 2019, 22: 374–385.

    CAS  Article  Google Scholar 

  6. 6.

    Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, Burton O, et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat Neurosci 2019, 22: 2111–2116.

    CAS  Article  Google Scholar 

  7. 7.

    Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu CH, et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 2019, 103: 1016–1033.

    CAS  Article  Google Scholar 

  8. 8.

    Svoboda DS, Barrasa MI, Shu J, Rietjens R, Zhang S, Mitalipova M, et al. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Proc Natl Acad Sci U S A 2019, 116: 25293–25303.

    CAS  Article  Google Scholar 

  9. 9.

    Ising C, Venegas C, Zhang S, Scheilblich H, Schmidt SV, Viera-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019, 575: 669–673.

    CAS  Article  Google Scholar 

  10. 10.

    Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, et al. Pioneer factor neuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 2019, 101: 472–485.

    CAS  Article  Google Scholar 

  11. 11.

    Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, Mondo E, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci 2019, 22: 1075–1088.

    CAS  Article  Google Scholar 

  12. 12.

    Liu YU, Ying Y, Li Y, Eyo UB, Chen T, Zheng J, et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 2019, 22: 1771–1781.

    CAS  Article  Google Scholar 

  13. 13.

    Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci 2019, 22: 1782–1792.

    CAS  Article  Google Scholar 

  14. 14.

    Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep 2019, 27: 2895-2908.

    CAS  Article  Google Scholar 

  15. 15.

    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74: 691–705.

    CAS  Article  Google Scholar 

  16. 16.

    Zhang J, Malik A, Choi HB, Ko RW, Dissing-Olesen L, MacVicar BA. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 2014, 82: 195–207.

    CAS  Article  Google Scholar 

  17. 17.

    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013, 155: 1596–1609.

    CAS  Article  Google Scholar 

  18. 18.

    Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep 2019, 27: 3844–3859.

    CAS  Article  Google Scholar 

  19. 19.

    Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu LJ. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 2014, 34: 10528–10540.

    Article  Google Scholar 

  20. 20.

    Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, et al. Microglia monitor and protect neuronal function via specialized somatic purinergic junctions. Science 2020, 367: 528–537.

    Article  Google Scholar 

Download references

Acknowledgements

This insight was supported by a National Institutes of Health (NIH) F32 grant (NS114040) and the Mayo Foundation and NIH R01 grants (NS088627 and NS112144).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Long-Jun Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umpierre, A.D., Wu, LJ. Microglia Research in the 100th Year Since Its Discovery. Neurosci. Bull. 36, 303–306 (2020). https://doi.org/10.1007/s12264-020-00477-8

Download citation