Advertisement

Test–Retest Reliability of Functional Magnetic Resonance Imaging Activation for a Vergence Eye Movement Task

  • Cristian Morales
  • Suril Gohel
  • Xiaobo Li
  • Mitchell Scheiman
  • Bharat B. Biswal
  • Elio M. Santos
  • Chang Yaramothu
  • Tara L. AlvarezEmail author
Original Article
  • 35 Downloads

Abstract

Vergence eye movements are the inward and outward rotation of the eyes responsible for binocular coordination. While studies have mapped and investigated the neural substrates of vergence, it is not well understood whether vergence eye movements evoke the blood oxygen level-dependent signal reliably in separate experimental visits. The test–retest reliability of stimulus-induced vergence eye movement tasks during a functional magnetic resonance imaging (fMRI) experiment is important for future randomized clinical trials (RCTs). In this study, we established region of interest (ROI) masks for the vergence neural circuit. Twenty-seven binocularly normal young adults participated in two functional imaging sessions measured on different days on the same 3T Siemens scanner. The fMRI experiments used a block design of sustained visual fixation and rest blocks interleaved between task blocks that stimulated eight or four vergence eye movements. The test–retest reliability of task-activation was assessed using the intraclass correlation coefficient (ICC), and that of spatial extent was assessed using the Dice coefficient. Functional activation during the vergence eye movement task of eight movements compared to rest was repeatable within the primary visual cortex (ICC = 0.8), parietal eye fields (ICC = 0.6), supplementary eye field (ICC = 0.5), frontal eye fields (ICC = 0.5), and oculomotor vermis (ICC = 0.6). The results demonstrate significant test–retest reliability in the ROIs of the vergence neural substrates for functional activation magnitude and spatial extent using the stimulus protocol of a task block stimulating eight vergence eye movements compared to sustained fixation. These ROIs can be used in future longitudinal RCTs to study patient populations with vergence dysfunctions.

Keywords

Vergence eye movement Test–retest reliability Functional MRI Vergence region of interest masks 

Notes

Acknowledgements

This work was supported by the National Eye Institute of the National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA (NEI R01EY023261 to TLA).

Conflict of interest

All authors claim that there are no conflicts of interest.

Supplementary material

12264_2019_455_MOESM1_ESM.pdf (480 kb)
Supplementary material 1 (PDF 481 kb)

References

  1. 1.
    Busettini C, Davison RC, Gamlin PDR. Vergence Eye Movements. 1st ed. New York: Encyclopedia of Neuroscience Elsevier, 2009: 75–84.Google Scholar
  2. 2.
    Mays LE, Porter JD, Gamlin PD, Tello CA. Neural control of vergence eye movements: neurons encoding vergence velocity. J Neurophysiol 1986, 56: 1007–1021.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    May PJ, Warren S, Gamlin PDR, Billig I. An anatomic characterization of the midbrain near response neurons in the macaque monkey. Invest Ophthalmol Vis Sci 2018, 59: 1486–1502.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mays LE, Gamlin PDR. Neuronal circuitry controlling the near response. Curr Opin Neurobiol 1995, 5: 763–768.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gamlin PDR. Neural mechanisms for the control of vergence eye movements. Ann N Y Acad Sci 2002, 956: 264–272.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kapoula Z, Isotalo E, Müri RM, Bucci MP, Rivaud-Péchoux S. Effects of transcranial magnetic stimulation of the posterior parietal cortex on saccades and vergence. Neuroreport 2001, 12: 4041–4046.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Coubard OA, Kapoula Z. Dorsolateral prefrontal cortex prevents short-latency saccade and vergence: a TMS study. Cereb Cortex 2006, 16: 425–436.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Alkan Y, Biswal BB, Taylor PA, Alvarez TL. Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI. Vis Neurosci 2011, 28: 247–261.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Alvarez TL, Alkan Y, Gohel S, Ward DB, Biswal BB. Functional anatomy of predictive vergence and saccade eye movements in humans: A functional MRI investigation. Vision Res 2010, 50: 2163–2175.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ward MK, Bolding MS, Schultz KP, Gamlin PD. Mapping the macaque superior temporal sulcus: functional delineation of vergence and version eye-movement-related activity. J Neurosci 2015, 35: 7428–7442.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rambold H, Neumann G, Sander T, Helmchen C. Pontine lesions may cause selective deficits of “slow” vergence eye movements. Ann N Y Acad Sci 2005, 1039: 567–570.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rambold H, Sander T, Neumann G, Helmchen C. Palsy of “fast” and “slow” vergence by pontine lesions. Neurology 2005, 64: 338–340.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Sander T, Sprenger A, Neumann G, Machner B, Gottschalk S, Rambold H, et al. Vergence deficits in patients with cerebellar lesions. Brain 2009, 132: 103–115.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Raemaekers M, Vink M, Zandbelt B, van Wezel RJ, Kahn RS, Ramsey NF. Test-retest reliability of fMRI activation during prosaccades and antisaccades. Hum Brain Mapp 2007, 36: 532–542.Google Scholar
  15. 15.
    Lukasova K, Sommer J, Nucci-Da-Silva MP, Vieira G, Blanke M, Bremmer F, et al. Test-retest reliability of fMRI activation generated by different saccade tasks. J Magn Reson Imaging 2014, 40: 37–46.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cooper J, Jamal N. Convergence insufficiency-a major review. Optometry 2012, 83: 137–158.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hussaindeen JR, Rakshit A, Singh NK, George R, Swaminathan M, Kapur S, et al. Prevalence of non-strabismic anomalies of binocular vision in Tamil Nadu: report 2 of BAND study. Clin Exp Optom 2017, 100: 642–648.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wajuihian SO, Hansraj R. Vergence anomalies in a sample of high school students in South Africa. J Optom 2016, 9: 246–257.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rouse MW, Borsting EJ, Hyman L, Hussein M, Cotter SA, Flynn M, et al. Frequency of convergence insufficiency among fifth and sixth graders. The Convergence Insufficiency and Reading Study (CIRS) group. Optom Vis Sci 1999, 76: 643–649.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Davis AL, Harvey EM, Twelker JD, Miller JM, Leonard-Green T, Campus I. Convergence insufficiency, accommodative insufficiency, visual symptoms, and astigmatism in Tohono O’odham students. J Ophthalmol 2016, 2016: 1–7.CrossRefGoogle Scholar
  21. 21.
    Nunes AF, Monteiro PML, Ferreira FBP, Nunes AS. Convergence insufficiency and accommodative insufficiency in children. BMC Ophthalmol 2019, 19: 19–58.CrossRefGoogle Scholar
  22. 22.
    García-Muñoz Á, Carbonell-Bonete S, Cantó-Cerdán M, Cacho-Martínez P. Accommodative and binocular dysfunctions: prevalence in a randomised sample of university students. Clin Exp Optom 2016, 99: 313–321.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Master CL, Scheiman M, Gallaway M, Goodman A, Robinson RL, Master SR, et al. Vision diagnoses are common after concussion in adolescents. Clin Pediatr (Phila) 2016, 55: 260–267.CrossRefGoogle Scholar
  24. 24.
    Alvarez TL, Kim EH, Vicci VR, Dhar SK, Biswal BB, Barrett AM. Concurrent vision dysfunctions in convergence insufficiency with traumatic brain injury. Optom Vis Sci 2012, 89: 1740–1751.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bolding MS, Lahti AC, White D, Moore C, Gurler D, Gawne TJ, et al. Vergence eye movements in patients with schizophrenia. Vision Res 2014, 102: 64–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chrobak A, Siuda K, Biela M, Arciszewska A, Siwek M, Pilecki MW, et al. Convergence insufficiency with unilateral exophoria at near in schizophrenia and bipolar disorder—a preliminary study. Psychiatr Pol 2015, 48: 1143–1154.CrossRefGoogle Scholar
  27. 27.
    Granet DB, Gomi CF, Ventura R, Miller-Scholte A. The relationship between convergence insufficiency and ADHD. Strabismus 2005, 13: 163–168.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Borsting E, Rouse M, Chu R. Measuring ADHD behaviors in children with symptomatic accommodative dysfunction or convergence insufficiency: a preliminary study. Optom J Am Optom Assoc 2005, 76: 588–592.CrossRefGoogle Scholar
  29. 29.
    Lin Y, Li M, Zhou Y, Deng W, Ma X, Wang Q, et al. Age-related reduction in cortical thickness in first-episode treatment-naïve patients with schizophrenia. Neurosci Bull 2019, 35: 688–696.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Su W, Guo J, Zhang Y, Zhou J, Chen N, Zhou M, et al. A longitudinal functional magnetic resonance imaging study of working memory in patients following a transient ischemic attack: A preliminary study. Neurosci Bull 2018, 34: 963–971.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sexton CE, Sykara K, Karageorgiou E, Zitser J, Rosa T, Yaffe K, et al. Connections between insomnia and cognitive aging. Neurosci Bull 2019.  https://doi.org/10.1007/s12264-019-00401-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M. Two different reorganization patterns after rehabilitative therapy: An exploratory study with fMRI and TMS. Neuroimage 2006, 31: 710–720.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Laatsch L, Krisky C. Changes in fMRI activation following rehabilitation of reading and visual processing deficits in subjects with traumatic brain injury. Brain Inj 2006, 20: 1367–1375.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sheng B, Lin M. A longitudinal study of functional magnetic resonance imaging in upper-limb hemiplegia after stroke treated with constraint-induced movement therapy. Brain Inj 2009, 23: 65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Alvarez TL, Vicci VR, Alkan Y, Kim EH, Gohel S, Barrett AM, et al. Vision therapy in adults with convergence insufficiency: Clinical and functional magnetic resonance imaging measures. Optom Vis Sci 2010, 87: 985–1002.CrossRefGoogle Scholar
  36. 36.
    Widmer DE, Oechslin TS, Limbachia C, Kulp MT, Toole AJ, Kashou NH, et al. Post-therapy functional magnetic resonance imaging in adults with symptomatic convergence insufficiency. Optom Vis Sci 2018, 95: 505–514.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Alvarez TL, Jaswal R, Gohel S, Biswal BB. Functional activity within the frontal eye fields, posterior parietal cortex, and cerebellar vermis significantly correlates to symmetrical vergence peak velocity: An ROI-based, fMRI study of vergence training. Front Integr Neurosci 2014, 8: 1–12.CrossRefGoogle Scholar
  38. 38.
    Gorgolewski KJ, Storkey AJ, Bastin ME, Whittle I, Pernet C. Single subject fMRI test—retest reliability metrics and confounding factors. Neuroimage 2013, 69: 231–243.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979, 86: 420–428.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fröhner JH, Teckentrup V, Smolka MN, Kroemer NB. Addressing the reliability fallacy in fMRI: Similar group effects may arise from unreliable individual effects. Neuroimage 2019, 195: 174–189.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dice LR. Measures of the amount of ecologic association between species. Ecology 1945, 26: 297–302.CrossRefGoogle Scholar
  42. 42.
    Sorensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Biol Skr K danske Vindensk Selsk 1948, 4: 1–34.Google Scholar
  43. 43.
    Rouse MW, Borsting EJ, Mitchell GL, Cotter SA, Kulp M, Scheiman M, et al. Validity of the convergence insufficiency symptom survey: a confirmatory study. Optom Vis Sci 2009, 86: 357–363.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Rouse MW, Borsting EJ, Lynn Mitchell G, Scheiman M, Cotter SA, Cooper J, et al. Validity and reliability of the revised convergence insufficiency symptom survey in adults. Ophthalmic Physiol Opt 2004, 24: 384–390.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    CITT-ART Investigator Group, Scheiman M, Mitchell GL, Cotter SA, Kulp M, Chase C, et al. Convergence insufficiency treatment trial—attention and reading trial (CITT-ART): design and methods. Vis Dev Rehabil 2015, 1: 214–228.Google Scholar
  46. 46.
    Convergence Insufficiency Treatment Trial (CITT) Study Group. The convergence insufficiency treatment trial: design, methods, and baseline data. Ophthalmic Epidemiol 2008, 15: 24–36.Google Scholar
  47. 47.
    Convergence Insufficiency Treatment Trial Study Group. Randomized clinical trial of treatments for symptomatic convergence insufficiency in children. Arch Ophthalmol 2008, 126: 1336–1349.CrossRefGoogle Scholar
  48. 48.
    Sheard C. Zones of ocular comfort. Am J Optom 1930, 7: 9–25.CrossRefGoogle Scholar
  49. 49.
    Hofstetter HW. A comparison of Duane’s and Donders’ tables of the amplitude of accommodation. Optom Vis Sci 1944, 21: 345–363.CrossRefGoogle Scholar
  50. 50.
    Cornelissen FW, Peters EM, Palmer J. The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum Comput 2002, 34: 613–617.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Alvarez TL, Semmlow JL, Yuan W, Munoz P. Comparison of disparity vergence system responses to predictable and non-predictable stimulations. Cah Psychol Cogn 2002, 21: 243–261.Google Scholar
  52. 52.
    Kumar AN, Han Y, Garbutt S, Leigh RJ. Properties of anticipatory vergence responses. Invest Ophthalmol Vis Sci 2002, 43: 2626–2632.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kimmig H, Greenlee M, Gondan M, Schira M, Kassubek J, Mergner T. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res 2001, 141: 184–194.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kim EH, Vicci VR, Han SJ, Alvarez TL. Sustained fixation induced changes in phoria and convergence peak velocity. PLoS One 2011, 6: e20883.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Alvarez TL, Semmlow JL, Yuan W, Munoz P. Disparity vergence double responses processed by internal error. Vision Res 2000, 40: 341–347.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kim EH, Vicci VR, Granger-Donetti B, Alvarez TL. Short-term adaptations of the dynamic disparity vergence and phoria systems. Exp Brain Res 2011, 212: 267-278.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Alvarez TL, Kim EH, Granger-Donetti B. Adaptation to progressive additive lenses: potential factors to consider. Sci Rep 2017, 7: 2529.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kim EH, Granger-Donetti B, Vicci VR, Alvarez TL. The relationship between phoria and the ratio of convergence peak velocity to divergence peak velocity. Investig Ophthalmol Vis Sci 2010, 51: 4017–4027.CrossRefGoogle Scholar
  59. 59.
    Alvarez TL, Kim EH, Yaramothu C, Granger-Donetti B. The influence of age on adaptation of disparity vergence and phoria. Vision Res 2017, 133: 1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chen YF, Lee YY, Chen T, Semmlow JL, Alvarez TL. Behaviors, models, and clinical applications of vergence eye movements. J Med Biol Eng 2010, 30: 1–15.Google Scholar
  61. 61.
    Alvarez TL, Kim EH. Analysis of saccades and peak velocity to symmetrical convergence stimuli: binocularly normal controls compared to convergence insufficiency patients. Investig Opthalmology Vis Sci 2013, 54: 4122–4135.CrossRefGoogle Scholar
  62. 62.
    Semmlow JL, Chen YF, Granger-Donnetti B, Alvarez TL. Correction of saccade-induced midline errors in responses to pure disparity vergence stimuli. J Eye Movement Res 2009, 21: 1–13.Google Scholar
  63. 63.
    Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007, 37: 90–101.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med 1996, 35: 346–355.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 2013, 76: 183–201.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Servatius RJ, Spiegler KM, Handy JD, Pang KCH, Tsao JW, Mazzola CA. Neurocognitive and fine motor deficits in asymptomatic adolescents during the subacute period after concussion. J Neurotrauma 2018, 35: 1008–1014.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995, 57: 289–300.Google Scholar
  68. 68.
    Gamlin PDR, Yoon K. An area for vergence eye movement in primate frontal cortex. Nature 2000, 407: 1003–1007.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fukushima J, Akao T, Takeichi N, Kurkin S, Kaneko CR, Fukushima K. Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation. J Neurophysiol 2004, 91: 2809–2825.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhang H, Gamlin PD. Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol 1998, 79: 1255–1269.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gnadt JW, Mays LE. Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space. J Neurophysiol 1995, 73: 280–297.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nienborg H, Bridge H, Parker AJ, Cumming BG. Receptive field size in V1 neurons limits acuity for perceiving disparity modulation. J Neurosci 2004, 24: 2065–2076.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Prince SJ, Pointon AD, Cumming BG, Parker AJ. The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J Neurosci 2000, 20: 3387–3400.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Prince SJD, Cumming BG, Parker AJ. Range and mechanism of encoding of horizontal disparity in macaque V1. J Neurophysiol 2002, 87: 209–221.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29: 162–173.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ. Broca’s region subserves imagery of motion: A combined cytoarchitectonic and fMRI study. Hum Brain Mapp 2000, 11: 273–285.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Santi A, Grodzinsky Y. Working memory and syntax interact in Broca’s area. Neuroimage 2007, 37: 8–17.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Paus T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 1996, 34: 475–483.CrossRefGoogle Scholar
  79. 79.
    Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 2014, 8: 1–24.Google Scholar
  80. 80.
    Pierrot-Deseilligny C, Milea D, Müri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol 2004, 17: 17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Grosbras MH, Lobel E, Van de Moortele PF, LeBihan D, Berthoz A. An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cereb Cortex 1999, 9: 705–711.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gamlin PDR, Clarke RJ. Single-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation. J Neurophysiol 1995, 73: 2115–2119.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Takagi M, Tamargo R, Zee DS. Effects of lesions of the cerebellar oculomotor vermis on eye movements in primate: binocular control. Prog Brain Res 2003, 142: 19–33.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Poldrack RA. Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2007, 2: 67–70.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tong Y, Chen Q, Nichols TE, Rasetti R, Callicott JH, Berman KF, et al. Seeking optimal region-of-interest (roi) single-value summary measures for fMRI studies in imaging genetics. PLoS One 2016, 11: e0151391.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Abrahamsson M, Ohlsson J, Björndahl M, Abrahamsson H. Clinical evaluation of an eccentric infrared photorefractor: the PowerRefractor. Acta Ophthalmol Scand 2003, 81: 605–610.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 2010, 1191: 133–155.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Caceres A, Hall DL, Zelaya FO, Williams SC, Mehta MA. Measuring fMRI reliability with the intra-class correlation coefficient. Neuroimage 2009, 45: 758–768.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Koo TK, Li MY. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016, 15: 155–163.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li L, Zeng L, Lin Z, Cazzell M, Liu H. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy–based brain imaging. J Biomed Opt 2015, 20: 050801.CrossRefGoogle Scholar
  91. 91.
    Morrison MA, Churchill NW, Cusimano MD, Schweizer TA, Das S, Graham SJ. Reliability of task-based fMRI for preoperative planning: a test-retest study in brain tumor patients and healthy controls. PLoS One 2016, 11: e0149547.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: Complex and reliable. Neuroimage 2010, 49: 1432–1445.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity networks: Test – retest evaluation using ICA and dual regression approach. Neuroimage 2010, 49: 2163–2177.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Taylor PA, Gohel S, Di X, Walter M, Biswal BB. Functional covariance networks: obtaining resting-state networks from intersubject variability. Brain Connect 2012, 2: 203–217.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jaswal R, Gohel S, Biswal BB, Alvarez TL. Task-modulated coactivation of vergence neural substrates. Brain Connect 2014, 4: 595–607.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Dubois J, Adolphs R. Building a science of individual differences from fMRI. Trends Cogn Sci 2016, 20: 425–443.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Duncan KJ, Pattamadilok C, Knierim I, Devlin JT. Consistency and variability in functional localisers. Neuroimage 2009, 46: 1018–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fernández G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 2003, 60: 969–975.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Hashemi H, Khabazkhoob M, Nabovati P, Shahraki FA, Ostadimoghaddam H, Faghihi M, et al. Accommodative insufficiency in a student population in Iran. J Optom 2019, 12: 161–167.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Atowa UC, Wajuihian SO, Hansraj R. Vergence profile and prevalance of non-strabismic vergence anomalies among school children in Abia State, Nigeria. Ophthalmic Epidemiol 2019, 26: 121–131.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Scheiman M, Rouse MW, Kulp MT, Cotter S, Hertle R, Mitchell GL. Treatment of convergence insufficiency in childhood: a current perspective. Optom Vis Sci 2009, 86: 420–428.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Scheiman M, Cotter S, Rouse M, Mitchell GL, Kulp M, Cooper J, et al. Randomised clinical trial of the effectiveness of base-in prism reading glasses versus placebo reading glasses for symptomatic convergence insufficiency in children. Br J Ophthalmol 2005, 89: 1318–1323.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Scheiman M, Mitchell GL, Cotter S, Kulp MT, Cooper J, Rouse M, et al. A randomized clinical trial of vision therapy/orthoptics versus pencil pushups for the treatment of convergence insufficiency in young adults. Optom Vis Sci 2005, 82: E583–E595.CrossRefGoogle Scholar
  104. 104.
    Pediatric Eye Disease Investigator Group. Home-based therapy for symptomatic convergence insufficiency in children. Optom Vis Sci 2016, 93: 1457–1465.CrossRefGoogle Scholar
  105. 105.
    Nehad T, Salem T, Elmohamady MN. Combined office-based vergence therapy and home therapy system for convergence insufficiency in Egyptian children. Open Ophthalmol J 2018, 12: 12–18.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Scheiman M, Gwiazda J, Li T. Non-surgical interventions for convergence insufficiency. Cochrane Database Syst Rev 2011, 3: CD006768.Google Scholar
  107. 107.
    Convergence Insufficiency Treatment Trial (CITT) Study Group. Long-term effectiveness of treatments for symptomatic convergence insufficiency in children. Optom Vis Sci 2009, 86: 1096–1103.Google Scholar
  108. 108.
    Scheiman M, Talasan H, Alvarez TL. Objective assessment of disparity vergence after treatment of symptomatic convergence insufficiency in children. Optom Vis Sci 2019, 96: 3–16.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Scheiman MM, Talasan H, Mitchell GL, Alvarez TL. Objective assessment of vergence after treatment of concussion-related CI: A pilot study. Optom Vis Sci 2017, 94: 74–88.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  1. 1.Biomedical EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Pennsylvania College of OptometrySalus UniversityPhiladelphiaUSA
  3. 3.Department of Health InformaticsRutgers University School of Health ProfessionsNewarkUSA

Personalised recommendations